$$
\begin{gathered}
\text { 6. } 857 \text { Recitation \#7 } \\
\text { April 9, } 2021
\end{gathered}
$$

Announcements:

- Quiz out; due April 21
- Individual, but please feel free to ask in OH/private Piazza posts - Project mentors assigned; your group should hear from them soon if not yet

Goal of today is to understand LWE more fully.

Why?
Crypto assumptions are crucial
... the foundation of cryptography's utility are no stronger than the assumptions used.

WE and its assumed hardness
"learning with errors"
Need four parameters to define instance of LWE

$$
(q, n, m, x)
$$

prime q is the field size of \mathbb{Z}_{q}
n is number of variables to "learn" (ie determine)
m is number of equations to solve for the variables
X is prob. dist. for the "errors" (ie noise distribution)

Mildly misleading, X is not necessarily, nor usually, the chi distribution
Also denoted ϕ, it is common to take noise from the
(discrete) normal distribution
so everything

$$
v / \quad \mathbb{E}[x]=0
$$

stays an

$$
\operatorname{Var}[x]=\sigma^{2}
$$

$\left(\begin{array}{ccc}\text { more } & \text { on } \sigma \\ & l a t e r\end{array}\right)$
integer and we
done leave \mathbb{Z}_{q}

Two main forms of LWE assumption:
Both take $s \leftarrow \mathbb{Z}_{q}^{n}, A \leftarrow \mathbb{Z}_{q}^{n \times m}, \quad e \leftarrow X^{m}$ (each element supped independently)

Arguably the intuitive form:
Search LWE:
Get $(A, s A+e)$.
Find s.
Hardness: no PPT algorithm \mathcal{A} can output s with non-negligible probability

What we saw on Wednesday:
Decision LVE:
Get (A, b) where $b \in \mathbb{Z}_{q}^{m}$
Decide: did you get

$$
(A, s A+e) \text { or }\left(A, U_{\mathbb{P}_{q}^{m}}\right) ?
$$

Hardness: no PPT \mathcal{A} can correctly decide

Big questions:
Why is it hard?
\rightarrow No answer. We done know it is hard, it just seems to be.

When might it be hard?
\rightarrow Our next topic.
How to set parameters (q, n, m, x)
n is the security parameter
What can we say about the other parameters as a function of n ?
ie. $\quad g(n)$

$$
\begin{aligned}
& m(n) \\
& X(n)
\end{aligned}
$$

LWE's dependence on m:
If $m<n$: $S A$ will not determine s
\rightarrow S not uniquely defined from system of linear equations sA
\Rightarrow PT $\&$ has to guess on $n-m$ variables each variable one of q possibilities \Rightarrow guessing works with negl prob.

When $m \geqslant n$: SA now probably fully determined $\Rightarrow A$ is random, so could fail to determine s even here.
s is determined when $\operatorname{rank}(A)=n$
We have $\operatorname{rank}(A)=n$ when the columns of A are orthogonal

Collision argument:
probability of 2 columns of A "colliding", ie being non-orthogonal:

$$
\begin{aligned}
& \text { "colliding", ie being non-orlhogonal. } \\
& \operatorname{Pr}(2 \text { columns are not orthogonal }]=\frac{q}{q^{n}} \leftarrow \text { ways nt to be orthogonal } \\
& \text { vectors in } \mathbb{Z}_{q}^{n} \\
& \Rightarrow \operatorname{Pr}\left[K^{\prime \prime} \text { collisions" }\right]=\left(\frac{1}{q^{n-1}}\right)^{k}
\end{aligned}
$$

K collisions means $\operatorname{rank}(A)$ is $\max (n, m-k)$

Finally, we need $m-k=n$:
or that $k=m-n$
We can compute the probability that there are too many collisions, which is when $K>m-n$, and therefore we dort have full rank, by summing over $k=m-n+1$ to $m-1$:

$$
\begin{aligned}
& \operatorname{Pr}\left[n_{0} t \text { full rank }\right]=\sum^{m-1}\left(\frac{1}{q^{n-1}}\right)^{k} \quad \text { geometric series } \\
& \sum_{k=a}^{n-1} x^{k}=\frac{x^{a}-x^{b}}{1-x} \leqslant \frac{x^{a}}{1-x} \\
& \leq \underbrace{\frac{1}{q^{(n-1)(m-n)}\left(q^{n-1}-1\right)}} \\
& x=\frac{1}{y} \Rightarrow \leq \frac{1}{y^{a-1}(y-1)} \\
& \text { Phew! }
\end{aligned}
$$

Easy to make negligible!
So when $m>n, s A$ is overwhelmingly likely to determine s uniquely

Can m be too big??
YES!

If $m(n)$ is super-poly (n), for example $2^{n}, n^{\text {potted }(n)}$, then hardness breaks down.

This is because PPT A can run in poly-time in size of input, and matrix A alone is size $n \cdot m$.

What about the noise X?
Uniform noise, $e \leftarrow \mathbb{Z}_{q}^{m}$, is too much.
Now sAte really is uniform, so we have information -theoretic hiding...
but also now A and $s A+e$ are independent so the tuple is useless for crypto.

But no noise, $X=\delta(x)$ for $x \in \mathbb{Z}_{q}$, is not hard at all
With discrete normal noise, standard deviation σ, it turns out the sweet spot is to have $\sigma \ll q$ such that

$$
\frac{q}{\sigma}=p o l y(\wedge)
$$

So q and σ are relatively determined for hardness of LWE to hold.
when $\frac{q_{0}}{\sigma}=$ poly (n), best known algorithm can
find s in $O\left(2^{n}\right) \quad \begin{gathered}\text { [Blum - Gala } \\ \text { Uasseman 200 2 }\end{gathered}$
(If $\frac{q}{\sigma}=$ superpoly(n), not enough noise and $\exists \mathcal{A} \ldots$)

PK crypts from LWE:
$\operatorname{Gen}\left(1^{n}\right): \operatorname{sel} \mathbb{Z}_{q}^{n} \quad A \in \mathbb{Z} \frac{n \times n}{q} \quad \underline{m=n}$ here!

$$
\begin{gathered}
c \in x= \\
p k=(A, b) \quad b=s A+e \\
s k=s \\
, \mu): \mu \in\{0, l\} \text { is a } b: t \quad\left\{\tilde{\mu}=\mu \cdot \left\lvert\, \frac{q}{3}\right.\right] \\
t \in x^{n} \quad \\
C T=t \cdot[A| | b]+[0,0, \ldots, 0,(\tilde{\mu}])
\end{gathered}
$$

$$
E \sim c(p k, \mu): \mu \in\{0, l\} \text { is a bit }
$$

Dec $(s k, C T)$: compute: $C T \cdot\left[\begin{array}{c}-5 \\ 1\end{array}\right]=\left(t \cdot[A \| b]+\left[0^{\wedge} \| \hat{\mu}\right]\right) \cdot\left[\begin{array}{c}-5 \\ 1\end{array}\right]$

$$
\begin{aligned}
& =t \cdot[A \| b] \cdot\left[\begin{array}{c}
-5 \\
1
\end{array}\right]+\tilde{\mu} \\
& =t \cdot(-s A+b)+\tilde{\mu} \\
& =t \cdot(-s A+s A+e)+\tilde{\mu} \\
& =t \cdot e+\tilde{\mu}
\end{aligned}
$$

$\mathbb{E}[|t \cdot e|]=n \sigma^{2} \ll q$, so if $t \cdot e+\tilde{\mu} \sim \frac{q}{3}$, then μ was 1 otherwise, μ was 0

