I. Roadmap

II. Schnorr's ID Scheme

Goal: Holder of secret key (sk) should be able to convince others they hdd the Sk without revealing info about it

$$
\rightarrow\left(P_{k}, S k\right)=\left(g^{x}, x\right)
$$

Setup:

- Pick prime number q
- We work in mod p, where $p=q \cdot r+1$
- $G=\left\{h^{\gamma} \bmod p, h \in \mathbb{Z}_{p}^{*}\right\}$
\uparrow
$r^{\text {th }}$ power residues

$$
|G|=q
$$

- Genentor g for G

Choose $h \in \mathbb{Z}_{p}^{*}$ sit. $h^{r} \neq 1(\bmod p)$
Let $g=h^{2}(\bmod p)$

Proof of Knowledge

- Holder picks secret key $x \in \mathbb{Z}_{q}$ publishes PK g^{x}

Commit

$$
\begin{aligned}
& \underset{(\text { knower } x)}{\operatorname{Pr}} \quad \frac{\text { Verifier }(u)}{\left(\text { knows } g^{x}\right)} \\
& k \in \mathbb{Z}_{q} \xrightarrow{r=g^{k}(\bmod p)} \\
& \underset{\sim}{V} \in \mathbb{Z}_{q}
\end{aligned}
$$

challenge
Presponds
$\xrightarrow{\text { response }}$ with quantity $s=k-x$ e V andine V accepts inf

$$
g^{s}=\frac{r}{P K^{e}}
$$

Why the check works?

$$
g^{s}=g^{k-x e}=\frac{g^{k}}{\left(g^{x}\right)^{e}}=\frac{r}{p k^{e}}
$$

Why does this work?
2 properties:

1) Prover must know x if he con answer mort challenges
in the form $\xrightarrow{\stackrel{e_{i}}{s_{i}}}$
Proof: Suppose P responds to challenges e_{1} and e_{2} with s_{1} and s_{2}.

$$
\begin{aligned}
& g^{s_{1}}=\frac{r}{p k^{e_{1}}} \quad g^{s_{2}}=\frac{r}{p k^{e_{2}}} \\
& \downarrow \\
& Q^{4}=9^{+} \quad g^{s_{1}} \cdot p K^{e_{1}}=g^{s_{2}} \cdot p K^{e_{2}}=r \\
& g^{s_{1}-s_{2}}=p k^{\left(e_{2}-e_{1}\right)} \\
& g^{s_{1}-s_{2}}=g^{x\left(e_{2}-e_{1}\right)} \\
& s_{1}-s_{2}=x\left(e_{2}-e_{1}\right) \\
& x=\frac{s_{1}-s_{2}}{e_{2}-e_{1}}
\end{aligned}
$$

P rust know x !
2) V gains no information about x.

Key assumption: V is honest
(ie. U picks e from \mathbb{Z}_{q} at random)

Proof: Verifier can generate a valid interactive transcript on their own WITHOUT knowledge of x.

How?
V chooses e, s at random from \mathbb{Z}_{q}
V uses e, s to compute r :

$$
\begin{gathered}
r=g^{s} \cdot P K^{e} \\
V^{\prime} \text { s transcript }=(P k, r, e, s)
\end{gathered}
$$

* The type of interaction seen in Schnorr's ID scheme is called Honest Verifier Zero knowledge.
III. Fiat-Shamiv Heuristic
- Converts an interactive proof of knowledge into a digital signature

How to convert Schorr's ID scheme?

- In challenge step, V sends to P

$$
e=H(m, r)
$$

* H is CR hash function
* Assuming ROM
- Scheme:

$$
\begin{aligned}
& \operatorname{Sign}(s k, m)=(r, e, s) \\
& \operatorname{Verify}(P k, m,(r, e, s)):
\end{aligned}
$$

accept if $D D$ scheme verifier areepts
IV. Schnorr's ID Scheme Example

- We'll use $q=5$ and $p=11$
\rightarrow In practice, q is 160 bits to avoid discrete log attacks.
p is selected to be 1024 bits to avoid birthday paradox attacks

Setup: $q=5, p=5 \cdot 2+1=11$

$$
\begin{aligned}
G & =\left\{h^{2} \bmod 11, h \in \mathbb{Z}_{11}^{*}\right\} \\
& =\{1,4,9,5,3\}
\end{aligned}
$$

For generator g, we pick h from \mathbb{Z}_{11}^{*}. Say we pick $h=9 \Rightarrow g=9^{2}(\bmod 11)$

$$
g=4
$$

Pol: User runs Gen to produce (SK ,PK) pair $\left(x, g^{x}\right)$.

Say we picked $x=3$ randomly from \mathbb{Z}_{q}

$$
\rightarrow g^{x}=4^{3}(\bmod 11)=9
$$

Run 3-phase protocol:

$$
\frac{p}{k \in x_{q}}
$$

se P drew $k=2$
commits
challenge

$$
\begin{aligned}
& \xrightarrow{r=4^{2}(\bmod 11)=5} \\
& e=1
\end{aligned} \begin{aligned}
& e \leftarrow \mathbb{Z}_{q} \\
& \stackrel{\text { Say }}{ } \vee \text { drew } e=1
\end{aligned}
$$

$$
\xrightarrow{s=2-3.1(\bmod q)=4}
$$

Verifier's check:

$$
\begin{aligned}
g^{s}(\bmod p) & =4^{4}(\bmod 11) \\
& =3 \\
r / P k^{e}(\bmod p) & =r \cdot\left(p k^{e}\right)^{-1}(\bmod p) \\
& =5 \cdot\left(q^{\prime}\right)^{-1}(\bmod 11) \\
& =5 \cdot 5(\bmod 11) \\
& =3 \mathrm{l}
\end{aligned}
$$

$\Rightarrow P$ must know the discrete log of the public key $g^{x}=9$ in modulo 11 .
V. Digital Signature Algorithm (DSA)

- Nearly identical to Schnorr's Signature Scheme.
Changes:
- In the commit phase,

$$
r=g^{k}(\bmod p)(\bmod q)
$$

\rightarrow produces shorter signatures

- V 's challenge to P is $e=H(m)$ instead of $H(m, r)$

Full scheme details are in lecture 12 notes.

