I. Roadmap

- Digital Signatures
 - Schnorr's Digital Signature
 - Fiat-Shamir Heuristic
 - Builds on Schnorr's ID Scheme
 - Builds on

II. Schnorr's ID Scheme

- Goal: Holder of secret key (Sk) should be able to convince others they hold the Sk without revealing info about it
 \[(Pk, Sk) = (g^x, r) \]

- Setup:
 - Pick prime number q
 - We work in mod p, where \(p = q \cdot r + 1 \)
\[G_r = \{ h^r \mod p, \ h \in \mathbb{Z}_p^* \} \]
\[|G_r| = q \]

- Choose \(g \in \mathbb{Z}_p^* \) s.t. \(h^r \neq 1 \pmod{p} \)
- Let \(g = h^r \pmod{p} \)
Proof of Knowledge

- Holder picks secret key $x \in \mathbb{Z}_q$
 - publishes PK g^x

Prover (P)
- (knows x)

- $k \in \mathbb{Z}_q$

Verifier (V)
- (knows g^x)

- $r = g^k \pmod{p}$

P commits

- challenge

- response

V responds
- challenge

- V accepts iff

$$g^s = g^{k-xe} = \frac{g^k}{(g^x)^e} = \frac{r}{p^e}$$
2 properties:

1) Prover must know x if he can answer most challenges in the form $\overleftarrow{e_i/s_i}$

Proof: Suppose P responds to challenges e_1 and e_2 with s_1 and s_2.

$$g^{s_1} = \frac{r}{PK^{e_1}}, \quad g^{s_2} = \frac{r}{PK^{e_2}}$$

$$g^{s_1} \cdot PK^{e_1} = g^{s_2} \cdot PK^{e_2} = r$$

$$g^{s_1-s_2} = PK^{(e_2-e_1)}$$

$$g = g$$

$$x = \frac{s_1-s_2}{e_2-e_1}$$

P must know x!
2) \(V \) gains no information about \(x \).

Key assumption: \(V \) is honest

(i.e. \(V \) picks \(e \) from \(\mathbb{Z}_q \) at random)

Proof: Verifier can generate a valid interactive transcript on their own WITHOUT knowledge of \(x \).

How?

\(V \) chooses \(e, s \) at random from \(\mathbb{Z}_q \)

\(V \) uses \(e, s \) to compute \(r \):

\[r = g^s \cdot PK^e \]

\(V \)'s transcript = \((PK, r, e, s)\)

The type of interaction seen in Schnorr's ID scheme is called Honest Verifier Zero Knowledge.
III. Fiat-Shamir Heuristic

- Converts an interactive proof of knowledge into a digital signature

How to convert Schorr’s ID scheme?

- In challenge step, V sends to P

 \[e = H(m, r) \]

 * H is CR hash function
 * Assuming ROM

- Scheme:

 \[
 \text{Sign}(SK, m) = (r, e, s) \]

 \[
 \text{Verify}(PK, m, (r, e, s)):
 \begin{align*}
 & \text{accept if ID scheme verifier accepts} \\
 & \text{accepts}
 \end{align*}
 \]
IV. Schnorr’s ID Scheme Example

- We’ll use $q = 5$ and $p = 11$
 - In practice, q is 160 bits to avoid discrete log attacks.
 p is selected to be 1024 bits to avoid birthday paradox attacks

Setup: $q = 5$ \quad p = 5 \cdot 2 + 1 = 11
\[G_1 = \{ h^2 \mod 11, h \in \mathbb{Z}_{11}^* \} \]
\[= \{ 1, 4, 9, 5, 33 \} \]

For generator g, we pick h from \mathbb{Z}_{11}^*.
Say we pick $h = 9 \Rightarrow g = 9^2 (\mod 11)$
\[g = 4 \]

Pok: User runs Gen to produce (SK, PK) pair (x, g^x).
Say we picked $x = 3$ randomly from \mathbb{Z}_q
\[g^x = 4^3 (\mod 11) = 9 \]
Run 3-phase protocol:

\[k \leftarrow \mathbb{Z}_q, \text{ say } P \text{ drew } k=2 \]

\[r = 4^2 (\text{mod} \ 11) = 5 \]

\[e = 1 \]

\[s = 2 - 3 \cdot 1 (\text{mod} \ 2) = 4 \]

\[e \leftarrow \mathbb{Z}_q, \text{ say } V \text{ drew } e=1 \]

Verifier’s check:

\[g^s (\text{mod} \ p) = 4^{44} (\text{mod} \ 11) = 3 \]

\[\frac{r}{P} (\text{mod} \ p) = \frac{5}{(9^4)^{-1} (\text{mod} \ 11) = 5 \cdot 5 (\text{mod} \ 11)} = 3 \]

\[\Rightarrow P \text{ must know the discrete log of the public key } g^x = 9 \text{ in modulo 11.} \]
IV. Digital Signature Algorithm (DSA)

- Nearly identical to Schnorr's Signature Scheme.

Changes:

- In the commit phase,
 \[r = g^k \pmod{p} \pmod{q} \]
 produces shorter signatures

- V's challenge to P is \(e = H(m) \) instead of \(H(m, r) \)

Full scheme details are in Lecture 12 notes.