
Massachusetts Institute of Technology Handout 5
6.857: Computer and Network Security April 05, 2021
Professors Ronald L. Rivest and Yael Tauman Kalai Due: April 21, 2020

Take–Home Quiz

• This quiz is due on Wednesday, April 21, 2021 at 11:59 PM.

• The number of points allocated for each problem is a rough estimate in minutes of
how long the problem will take to solve in an in-class exam for someone who was well
prepared. (They will probably take longer on a take–home exam if you “study” as you
work through them.)

Problem 1 40 points
Problem 2 40 points
Problem 3 30 points
Problem 4 45 points
Problem 5 35 points
Problem 6 30 points
Problem 7 30 points
Problem 8 30 points
Problem 9 20 points

Total 300 points

• Please submit your problem set, in PDF format, on Gradescope. A LaTeX template
of the problem set is provided. Include all problems in the same PDF file. You do not
need to show code you may have used.

• You are to work on this problem set individually.

• This problem set is open notes. You may use the lecture notes posted to the course
website, and any notes that you took yourself during class. You may also use any other
resources online or otherwise, except for other students. Consulting office hours and
private posts on Piazza is also allowed.

• Corrections, if any, will be announced on Piazza.
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Problem 1. True or False.

Determine whether the following statements are true or false, and briefly justify your
answer, supplying an example or counterexample if appropriate.

True False U.S. citizenship of all team members was required for team to submit
a hash function design to NIST to be considered for any of the U.S.
Digital Signature standards SHA-1, SHA-2, or SHA-3.

True False When using SHA-3 (“sponge construction”) as a pseudo-random num-
ber generator, it is important that at any point in time the number
of truly random bits “absorbed” into the state not be less than the
number of pseudo-random bits “squeezed out” of the state.

True False The smallest non-prime number p satisfying the Fermat test for pri-
mality ap−1 = 1 (mod p) for a = 2 has three decimal digits.

True False A symmetric encryption method can not be CCA-secure if it is “self-
inverse” (the encryption operation and the decryption operation are
the same function).

True False With Shamir’s secret-sharing method, the secret to be shared is used
as the constant term of the secret-sharing polynomial c0+c1x+c2x

2 . . ..
That is, c0 is set to s and the other coefficients are randomly chosen. If
instead the coefficient c1 is set to the secret s and the other coefficients
are chosen randomly, the modified scheme is still secure.

True False A public-key encryption method is re-randomizable if the encryption
operation c = Enc(PK,m, r) takes as input not only the public key
PK and the message m, but also a random value r, and furthermore
anyone knowing c can “re-randomize” it to a new, distinct ciphertext
for m, e.g., to c′ = Enc(PK,m, r′), without knowing the secret key SK

or the randomness value r.

True or False: A CPA-secure public-key encryption method can not
be re-randomizable. (It is OK to make reasonable computational as-
sumptions for this question.)

True False If you have a choice between a security mechanism that provides pre-
vention of security violations, and one that provides merely detection
of security policy violations, you should always choose the one pro-
viding prevention, assuming that both methods are fool-proof at what
they do.

True False When signing a message in RSA with “Hash and Sign,” suppose you
replace the hash function with a simpleSum algorithm, which instead
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splits a message into 64-bit sections M = m0...mi, and adds them
all together modulo 264. Claim: the new scheme is secure against an
ACMA attack (“adaptive chosen message attack”) if the previous one
was.
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Problem 2. One-Time Pad (OTP).
Non-committing Encryption
While working on this quiz, your TAs, being security conscious, decide to encrypt all their
messages using the one time pad (OTP). Specifically, they use the Vernam cipher, a version
on the one time pad that uses the English alphabet as its set of symbols. (That is, working
modulo 26, with A = 0, B = 1, . . . , Z = 25.1)

First, Billy, Deep, and Andrés meet to agree on a set of secret keys chosen independently
and uniformly at random to be used for encrypting their messages. Once they have a shared
set of keys, they go home and communicate about the quiz by sending their ciphertexts over
email.

Billy sends the first message about the quiz, taking the first key k1 = GHTKAIS and producing
the ciphertext c1 = ZVHOAAQ, which he emails to Deep and Andrés.

After receiving and decrypting Billy’s email, Deep takes the second key k2 = SHRBGLA and
uses it to produce the ciphertext c2 = LVFIGCD, which he sends as a reply to Billy and
Andrés.

Finally, Andrés, after seeing both Billy and Deep’s opinions on the quiz, crafts his own
ciphertext c3 = BSNMXTU using k3 = IEZBJGO. However, Andrés accidentally forwards the
email chain with c1, c2, and c3 (but not the keys) to the whole class instead of just replying
to Deep and Billy!

Being understandably curious after receiving an email from their TAs with the subject line
“quiz difficulty,” students in the class asked to know what the plaintexts of these emails are.
The quiz is still being written though, and the TAs don’t want to make students nervous
with their early opinions. They could refuse to decrypt the messages, but that also seems a
bit incriminating.

(a) Can Billy, Deep, and Andrés produce different keys k′1, k
′
2, and k′3 such that each of

c1, c2, and c3 appears to decrypt to the message PERFECT?

(b) Based off the original keys, what did each of Billy, Deep, and Andrés actually think
of the quiz?

‘Unlucky’ Keys?
Alice and Bob are using the one time pad (Vernam edition) to encrypt their messages.
They have been vary careful to implement the scheme correctly, and are encrypting their
messages with single-use shared keys that are the same length as the messages and have been
selected uniformly at random. That is, if Alice is encrypting a n-letter message m to Bob,
she produces her ciphertext c as c = m +26 k, where k is an n-letter string chosen earlier
uniformly at random by Alice and shared securely with Bob and +26 denotes addition modulo
26 (using the symbol set to represent residues modulo 26). After encrypting her message,

1An online tool for producing and decrypting Vernam ciphertexts can be found here:
https://www.dcode.fr/vernam-cipher-vigenere
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Alice sends c over the wire to Bob. However, an eavesdropper, Eve, has been listening on
the wire and is recording all of Alice’s ciphertexts!

Assume that Alice and Bob really did implement their OTP scheme correctly and that Eve
knows that Alice and Bob are using a correct OTP implementation.

(c) Assume Alice and Bob randomly chose, and now share, the secret key k = AAAAAAAA.
Alice wants to send the message m = OTPISFUN. When she goes to encrypt it with
k = AAAAAAAA, her ciphertext c is also OTPISFUN! What, if anything, does Eve learn
about Alice’s plaintext m or key k from seeing her ciphertext?

(d) On a distinct OTP setup from the previous part (where k is no longer fixed), suppose
that Alice always begins her messages with the string HIBOB and that Eve is aware of
Alice’s habit. Alice and Bob generate a secret key k, and Eve observes the ciphertext

c = HIBOBLETSMEETSATURDAY.

What does Eve learn about Alice and Bob’s key k from observing this ciphertext?
Can Eve infer that Alice and Bob are probably meeting on Saturday?
(Again, Alice and Bob are using the OTP scheme, and Eve knows this. But Eve is a
passive adversary and only observes c.)
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Problem 3. RSA Shenanigans.

Alice has taken 6.857, and is concerned that basic RSA can not even be CPA-secure, because
it is not randomized. She considers the following randomized variant of RSA, where the
sender chooses the encryption exponent e at random:

1. The primes p and q are safe primes, so that primes p = 2r+1 and q = 2s+1 are chosen
such that r and s are (λ− 1)-bit primes.

2. The public key PK = (n, λ) is the number n = pq and the security parameter λ. The
secret key is the pair (r, s).

3. To encrypt a message m in Zn, the sender randomly chooses an odd value of e > 1,
whose bit-length is at most λ− 2, and sends c = (e,me mod n) as the ciphertext.

(a) Show that Alice can successfully decrypt a message sent to her.

(b) Although Alice’s RSA variant is now randomized, argue that it is nonetheless not
CPA–secure.
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Problem 4. MACs.

Let (Gen, Enc, Dec) be a CPA secure secret-key encryption scheme, and let MAC be a message
authentication code that is secure against adaptive chosen message attacks. Consider the
following new encryption algorithm (Gen′, Enc′, Dec′):

1. The key generation algorithm Gen′(1n) runs Gen(1n) to generate a secret key sk, and
then in addition Gen′ randomly generates a key k ← {0, 1}n for the MAC.

2. The Encryption algorithm Enc′ is defined by Enc′((sk, k),m) = Enc(sk,m||MAC(k,m)).
You may assume that MAC produces an output of length that is fixed and known.

3. The decryption algorithm Dec′ takes as input a secret key (sk, k) and a ciphertext c, it
first runs Dec to compute m′ = Dec(sk, c). Then it parses m′ as m||t and outputs m if
t = MAC(k,m); otherwise it outputs ⊥.

(Note: here, as throughout the quiz, a||b means a concatenated with b.)

(a) Given Enc′((sk, k),m1) for an arbitrary message m1, is it possible to generate a valid
encryption to any other message m2 6= m1? Explain your answer. (By a valid
ciphertext we mean a ciphertext that does not decrypt to ⊥.)

(b) Argue that the encryption scheme (Gen′, Enc′, Dec′) is not CCA secure. Give an
example of two messages whose encryptions can be distinguished.



6.857 : Handout 5: Take–Home Quiz 8

Problem 5. Symmetric cryptography in the random oracle model.

Suppose you are in a world in which there is access to a random oracle H. With no other
assumptions, which of the following can you construct? For each, either give your construc-
tion or argue why it cannot be constructed from H. (Tip: pay careful attention to the use
of any keys.)

(a) A pseudo–random function F (k, ·).
(b) A CPA–secure symmetric encryption scheme.

(c) A secure message authentication code.

(d) A CCA–secure symmetric encryption scheme.
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Problem 6. Breaking and maintaining collision resistance.

Let H = {hk(x)} be a collision–resistant (CR) family of hash functions where for each key
k ∈ {0, 1}n the hash function hk maps {0, 1}∗ to {0, 1}d(n).

(a) Is H ′ = {hk(hk(x))} necessarily CR? Explain.

(b) Consider H ′ = {fk′(x)}, where

fk′(x) = hk1(x)||hk2(x),

with k′ = k1||k2 ∈ {0, 1}2n. Is H ′ necessarily CR? Explain.

(c) Consider H ′ = {gk(x)} where

gk(x) = hk(x1)⊕ hk(x2),

with x = x1||x2 such that |x1| = |x2| = |x|/2. (You may assume |x| is even.) Is H ′

necessarily CR? Explain.
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Problem 7. Block cipher.

Let Enc(k,m) denote a given block cipher that takes as input an n–bit key k and an n–bit
message block m, and returns an n–bit ciphertext block c = Enc(k,m). In this problem you
may assume that Enc is an ideal block cipher.

Define a new block cipher Enc′((k1, k2),m) in terms of Enc as follows. The block cipher Enc′

takes as input a key k consisting of two n-bit key-parts k1 and k2, and an n-bit message
block m, and returns the 2n-bit ciphertext block

c = (c1, c2) = Enc′((k1, k2),m) = Enc(k1, r) || Enc(k2, s)

where r and s are random values that add to m modulo 2n. That is, the result is the
concatenation of the encryption of a random n–bit value r under Enc using key k1 and the
encryption of s = m− r under Enc using key k2. Arithmetic is modulo 2n, so that r+ s = m
(mod 2n).

(a) Is Enc′ a CPA–secure block cipher? Explain.

(b) Is Enc′ a CCA–secure block cipher? Explain.
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Problem 8. Secret Sharing over Rings.
In class, we have studied the use of Shamir’s secret sharing scheme over finite fields. How-
ever, there exists an algebraic structure similar to fields called rings (for more info, see
https://en.wikipedia.org/wiki/Ring (mathematics)). For this problem, we will con-
sider Z1000, the ring of elements {0, 1, . . . , n − 1}, where addition and multiplication are
modulo n = 1000. Note that Z1000 is a group under addition but is not a group under
multiplication.

Suppose the 6.857 staff wants to safeguard a secret s ∈ Z1000. The staff runs Shamir’s secret
sharing scheme’s share(s) algorithm. s is the constant term of the secret-hiding polynomial
p(x), and we choose the remaining polynomial coefficients at random from Z1000.

(a) Suppose we give you the share (2, p(2)). What information does this share expose
about the secret s?

(b) Argue that any share of the form (k, p(k)) where k ∈ Z1000 and gcd(k, 1000) > 1 leaks
information about secret s.

(c) Argue that no share of the form (k, p(k)) where k ∈ Z1000 and gcd(k, 1000) = 1 leaks
information about secret s.
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Problem 9. CDH El-Gamal.

In class and recitation we saw the Computational Diffie-Hellman assumption (CDH), which
informally says that, given gx and gy, it is hard for an adversary to compute gxy. This is
weaker than the similar Decisional Diffie-Hellman assumption (DDH), where the adversary
only needs to distinguish gxy from gz, where z is randomly chosen.

(a) As a warmup, name a group where CDH holds but DDH doesn’t.

(b) In class we showed that the CPA-security of the El-Gamal encryption scheme relies
on DDH being hard on the cyclic group generated by the Gen algorithm. Show that
we can not weaken the assumption to CDH. That is, argue that El-Gamal need not be
CPA-secure if the group satisfies CDH but not DDH (that is, we do need the stronger
assumption).

(c) Fix the problem(s) you found in the previous part, and modify the El-Gamal scheme
so that CDH is enough for it to be CPA-secure. Argue that your construction is
secure under CDH.


