The Evolution of Proofs in Computer Science:

Zero-Knowledge Proofs

6.857 Lecture 13

Classical Proofs

Classical Proofs

Zero-Knowledge Proofs [Goldwasser-Micali-Rackoff85]

Proofs that reveal no information beyond the validity of the

statement

Zero-Knowledge Proofs [Goldwasser-Micali-Rackoff85]

Impossible!

Interactive Proofs [Goldwasser-Micali-Rackoff85]

Completeness: $\forall x \in L \ \Pr[(P, V)(x) = 1] \ge 2/3$

Soundness: $\forall x \notin L, \forall P^* \Pr[(P^*, V)(x) = 1] \le 1/3$

Note: By repetition, we can get completeness $1 - 2^{-k}$, and soundness 2^{-k}

[Goldreich-Micali-Wigderson87]: Every statement that has a classical proof has zero-knowledge (ZK) interactive proof, assuming one-way functions exist

Defining Zero-Knowledge

Formally: There exists a *PPT* algorithm *S* (called a simulator), such that for every $x \in L$:

 $S(x) \approx (P, V)(x)$ Denotes the transcript

ZK Proofs for NP

Graphs for which vertices can be colored by {1,2,3} s.t. no two adjacent vertices are colored by the same color

For the NP-complete language of all 3-colorable graphs

Soundness: Only $1 - \frac{1}{|E|}$ but can be amplified via repetition.

ZK Proofs for NP

For the *NP*-complete language of all 3-colorable graphs

S(V, E):

Implementing Digital Safes: Commitment Scheme

A **commitment scheme** is a randomized algorithm *Com* s.t.:

• Hiding: $\forall m, m' \ Com(m; r) \approx Com(m'; r')$.

• Binding: $\nexists(m,r), (m',r')$ s.t. $m \neq m'$ and Com(m;r) = Com(m';r')

Using Commitments to Construct ZK Proofs

For the NP-complete language of all 3-colorable graphs

G = (V, E) V

corresponding randomness

Constructing a Commitment Scheme

Construction 1:

Let $f: \{0,1\}^* \rightarrow \{0,1\}^*$ be an injective OWF.

$Com(b; (r, s)) = (f(r), s, (\bigoplus r_i s_i) \bigoplus b)$

Binding: Follows from the fact that *f* is injective

Hiding: Relies on the fact that if *f* is one-way then:

 $(f(r), s, \bigoplus_{i} r_i s_i) \approx (f(r), s), U)$

Known as a hard-core predicate [Goldreich-Levin89]

Constructing a Commitment Scheme

Construction 2:

Let G be a group of prime order p, let $g \in G$ be any generator, and h be a random group element.

$$Com_{g,h}(m,r) = g^m h^r$$

Hiding: Information theoretically!

Binding: Follows from the Discrete Log assumption. If $\exists PPT$ alg A s.t. $A(g,h) = (m_1, m_2, r_1, r_2)$ where $g^{m_1}h^{r_1} = g^{m_2}h^{r_2}$ then $m_1 + sr_1 = m_2 + sr_2 \mod p$, which implies that $s = \frac{m_1 - m_2}{r_2 - r_1} \mod p$

Interactive Computationally Sound Proofs (a.k.a. Arguments) [Brassard-Chaum-Creapeau88]

Completeness: $\forall x \in L \ \Pr[(P, V)(x) = 1] \ge 2/3$

Soundness: $\forall x \notin L, \forall PPT P^* \Pr[(P^*, V)(x) = 1] \le 1/3$

So Far...

• Constructed ZK proofs for all of NP

- using commitment schemes

Constructed commitment scheme

– Based on injective OWF:

Based on Discrete Log:

computationally hiding, perfectly binding

Computational ZK proofs

Perfect ZK arguments

perfectly hiding, computationally binding

Interactive Proofs are More Efficient! [Lund-Fortnow-Karloff-Nissan90, Shamir90]

Example: Chess

Interactive Proofs are More Efficient! [Lund-Fortnow-Karloff-Nissan90, Shamir90]

correctness of any computation can be proved:

Time to verify

 \approx

Space required to do the Interactive computation

IP = PSPACE

Proof

Interactive Proofs are More Efficient! [Lund-Fortnow-Karloff-Nissan90, Shamir90]

correctness of any computation can be proved:

Time to verify

 \approx

Space required to do the computation

Succinct space —> succinct interactive proof

Multi-Prover Interactive Proofs

[BenOr-Goldwasser-Kilian-Wigderson88]

$\forall f \text{ computable in time } T$:

2-provers can convince verifier that f(x) = y, where the **runtime** of the **verifier** is only $|x| \cdot polylog(T)$ and the **communication** is polylog(T)

[Fortnow-Rompel-Sipser88]:

Probabilistically Checkable Proofs

[Feige-Goldwasser-Lovasz-Safra-Szegedy91, Babai-Fortnow-Levin-Szegedy91, Arora-Safra92, Arora-Lund-Mutwani-Sudan-Szegedy92]

