The Evolution of Proofs in
Computer Science:

Zero-Knowledge Proofs
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Classical Proofs
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Zero-Knowledge Proofs
|Goldwasser-Micali-Rackoff85]

Proofs that reveal no
information beyond

the validity of the
statement




Zero-Knowledge Proofs
|Goldwasser-Micali-Rackoff85]

Impossible!
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Interactive Proofs
|Goldwasser-Micali-Rackoff85]
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Completeness: Vx € L Pr[(P,V)(x) =1] = 2/3
Soundness: Vx & L,VP* Pr[(P*,V)(x) =1] <1/3

Note: By repetition, we can get completeness 1 — 27%, and soundness 2%



Interactive Proofs
aldwasser-Micali-Rackoff85]

For ZK the prover
needs to be

randomized 8 P V
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[Goldreich-Micali-Wigderson87]: Every statement

that has a classical proof has zero-knowledge (ZK)
interactive proof, assuming one-way functions exist




Defining Zero-Knowledge

X EL

This transcript reveals

P no information

Formally: There exists a PPT algorithm S (called a simulator), such
that for every x € L:
S(x) = (P,V)(x)
™~ Denotes the

transcript



raphs for whic

vertices can be

Z K P f f N P colored by {1,2,3} s.t.
ro O S O r no two adjacent

vertices are colored by
the same color

For the NP-complete language of all 3-colorable graphs

G = (V» E) Locked safe, reveals

P no information
about its content

Randomly permute
the coloring, to
obtain valid

coloring (c Cn) Choose
8 EL s Cn (i,j) EE random edge
< § (i,j) EE
Open safes i,L
Soundness: Only 1 — L but can be amplified via repetition.
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/K Proofs for NP

For the NP-complete language of all 3-colorable graphs

P

G =(V,E)

e

_GDEE

Open safes i,L

S(V,E):

. Choose arandom (i,j) € E
. Choose random distig safes

colors ¢;, ¢; i,j have

. The simulated transCEVE| NI YorNrer
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Open safes i,'L>




Implementing Digital Safes:
Commitment Scheme

A commitment scheme is a randomized
algorithm Com s.t.:

* Hiding: Vvm,m’ Com(m;r) = Com(m';r").

* Binding: ﬁ(m, r),(m’,r") st.m = m' and
Com(m;r) = Com(m';r")



Using Commitments to Construct ZK Proofs
For the NP-complete language of all 3-colorable graphs

G =(V,E)

P V

Randomly permute

the coloring, to Com(cl), . Com(cn)
obtain valid >
coloring (cq, ..., Cp) Choose a
(i,j) EE random edge
— (i) €E

Reveal ¢;, ¢, with X
corresponding randomness




Constructing a Commitment Scheme

Construction 1:
Let f:{0,1}* — {0,1}* be an injective OWF.

Com(b; (r,s)) = (f(r),s,(Dr;s;) D b)

Binding: Follows from the fact that f is injective

Hiding: Relies on the fact that if f is one-way then:

(f(r),s, Drisi) = (f(r),s),U)

Known as a hard-core

predicate
[Goldreich-Levin89]




Constructing a Commitment Scheme

Construction 2:

Let G be a group of prime order p, let g € G be any generator, and
h be a random group element.

Comgy,(m,r) = g™h"

Hiding: Information theoretically!

Binding: Follows from the Discrete Log assumption.
If APPT alg A s.t.
A(g,h) = (mqy,m,,1r{,1,) where g"™1h™ = gm2h™ then

mq + sr1 = m, + s, mod p,
my—m;

which implies that s = mod p
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This is perfect ZK!
But only

computationally
sound

P g hEG V Perfectly
PR

hiding

Randomly permute
the coloring, to COm,q,h (Cl), e ) Com‘q,h (CnL

obtain valid
Choose a
All powerful (i ]) e F random edge
prover can -— (i,j) EE
break binding
Reveal ¢;, ¢, with X

corresponding randomness



Interactive Computationally Sound Proofs

(a.k.a. Arguments)
[Brassard-Chaum-Creapeau88]
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Completeness: Vx € L Pr[(P,V)(x) =1] = 2/3

Soundness: Vx ¢ L,VYPPT P* Pr[(P*,V)(x) =1] <1/3



So Far...

* Constructed ZK proofs for all of NP

— using commitment schemes

* Constructed commitment schemogen T

. . . f
— Based on injective OWF: ZK proofs

computationally hiding, perfectly binding

Perfect ZK
— Based on Discrete Log: arguments

perfectly hiding, computationally binding



Interactive Proofs are More Efficient!
[Lund-Fortnow-Karloff-Nissan90, Shamir90]

Example: Chess
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Interactive Proofs are More Efficient!
[Lund-Fortnow-Karloff-Nissan90, Shamir90]

correctness of any computation can be proved:

Time to verify

Space required to do the
computation

Interactive
Proof

IP = PSPACE



Interactive Proofs are More Efficient!
[Lund-Fortnow-Karloff-Nissan90, Shamir90]

correctness of any computation can be proved:

Time to verify

Space required to do the
computation

Succinct space == succinct interactive proof



Multi-Prover Interactive Proofs
[BenOr-Goldwasser-Kilian-Wigderson88]

Vf computable in time T:
2-provers can convince verifier that f(x) = y,
where the runtime of the verifier is only |x| - polylog(T)
and the communication is polylog(T)




[Fortnow-Rompel-Sipser88]:

la.| a,]a; a4P1| 1la]a, aﬁlz




Probabilistically Checkable
Proofs

[Feige-Goldwasser-Lovasz-Safra-Szegedy91, Babai-Fortnow-Levin-

Szegedy91, Arora-Safra92, Arora-Lund-Mutwani-Sudan-Szegedy92]

Read only 3 bits of the

proof, and obtain
soundness 1/8




Classical proofs

U

(Zero-knowledge)
Interactive proofs

Multi-prover
interactive proofs
Probabilistically
checkable proofs (PCPs)
l Shamir

Interactive PCP/ paradigm
Interactive oracle proofs 1
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