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The Evolution of Proofs in 
Computer Science:

Zero-Knowledge Proofs



Classical Proofs 

𝑃 𝑉



Classical Proofs 

𝑃 𝑉

Conjecture: ∃ succinct classical proof for correctness of any 

computation 𝑀 𝑥 = 1 within 𝑇 steps



Zero-Knowledge Proofs
[Goldwasser-Micali-Rackoff85]

Proofs that reveal no 
information beyond 

the validity of the 
statement 



Zero-Knowledge Proofs
[Goldwasser-Micali-Rackoff85]

Impossible!

This is 
information!



Interactive Proofs
[Goldwasser-Micali-Rackoff85]

𝑃 𝑉

Completeness: ∀𝑥 ∈ 𝐿 Pr 𝑃, 𝑉 𝑥 = 1 ≥ 2/3

Soundness: ∀𝑥 ∉ 𝐿, ∀𝑃∗ Pr 𝑃∗, 𝑉 𝑥 = 1 ≤ 1/3

Note: By repetition, we can get completeness 1 − 2!" , and soundness 2!"



Interactive Proofs
[Goldwasser-Micali-Rackoff85]

𝑃 𝑉

[Goldreich-Micali-Wigderson87]: Every statement 
that has a classical proof has  zero-knowledge (ZK) 
interactive proof, assuming one-way functions exist

For ZK the prover 
needs to be 
randomized



Defining Zero-Knowledge

𝑃 𝑉 This transcript reveals 
no information

𝑥 ∈ 𝐿

Formally:  There exists a 𝑃𝑃𝑇 algorithm 𝑆 (called a simulator), such 
that for every 𝑥 ∈ 𝐿:

𝑆 𝑥 ≈ (𝑃, 𝑉)(𝑥)
Denotes the 
transcript



ZK Proofs for NP

𝐺 = 𝑉, 𝐸

For the 𝑁𝑃-complete language of all 3-colorable graphs

𝑖, 𝑗 ∈ 𝐸

Open safes 𝑖, 𝑗

𝑪𝟏

𝑃
𝑪𝒏

𝑉
Randomly permute 

the coloring, to 
obtain valid 

coloring (𝑐#, … , 𝑐$)
Choose a 
random edge 
𝑖, 𝑗 ∈ 𝐸

Locked safe, reveals 
no information 

about its content

Soundness: Only 1 − !
"

but can be amplified via repetition.

Graphs for which 
vertices can be 

colored by {1,2,3} s.t.
no two adjacent 

vertices are colored by 
the same color



𝐺 = 𝑉, 𝐸

For the 𝑁𝑃-complete language of all 3-colorable graphs

𝑖, 𝑗 ∈ 𝐸

Open safes 𝑖, 𝑗

𝑪𝟏

𝑃
𝑪𝒏

𝑉
𝑆 𝑉, 𝐸 :

1. Choose a random 𝑖, 𝑗 ∈ 𝐸
2. Choose random distinct 

colors 𝑐% , 𝑐&
3. The simulated transcript is:

𝑖, 𝑗 ∈ 𝐸

Open safes 𝑖, 𝑗

safes 
𝑖, 𝑗 have 

values 𝑐% , 𝑐&

ZK Proofs for NP



Implementing Digital Safes:
Commitment Scheme

A commitment scheme is a randomized 
algorithm 𝐶𝑜𝑚 s.t.:

• Hiding: ∀𝑚,𝑚! 𝐶𝑜𝑚 𝑚; 𝑟 ≈ 𝐶𝑜𝑚(𝑚!; 𝑟!).

• Binding:  ∃ 𝑚, 𝑟 , 𝑚!, 𝑟! s.t. 𝑚 ≠ 𝑚′ and
𝐶𝑜𝑚 𝑚; 𝑟 = 𝐶𝑜𝑚(𝑚!; 𝑟!)



Using Commitments to Construct ZK Proofs 

𝐺 = 𝑉, 𝐸

For the 𝑁𝑃-complete language of all 3-colorable graphs

𝑖, 𝑗 ∈ 𝐸

Reveal 𝑐,, 𝑐-, with 
corresponding randomness

𝑃 𝑉
Randomly permute 

the coloring, to 
obtain valid 

coloring (𝑐#, … , 𝑐$)
Choose a 
random edge 
𝑖, 𝑗 ∈ 𝐸

𝐶𝑜𝑚 𝑐. , … , 𝐶𝑜𝑚(𝑐/)



Constructing a Commitment Scheme

Construction 1:  
Let 𝑓: 0,1 ∗ → 0,1 ∗ be an injective OWF.

𝑪𝒐𝒎 𝒃; (𝒓, 𝒔) = (𝒇 𝒓 , 𝒔, (⊕ 𝒓𝒊 𝒔𝒊) ⊕ 𝒃)

Hiding: Relies on the fact that if 𝒇 is one-way then:

𝑓 𝑟 , 𝑠, ⊕ 𝑟, 𝑠, ≈ 𝑓 𝑟 , 𝑠 , 𝑈)

Known as a hard-core 
predicate

[Goldreich-Levin89]

Binding: Follows from the fact that 𝑓 is injective 



Constructing a Commitment Scheme

Construction 2:  
Let 𝐺 be a group of prime order p, let 𝑔 ∈ 𝐺 be any generator, and 
ℎ be a random group element.

𝑪𝒐𝒎𝒈,𝒉 𝒎, 𝒓 = 𝒈𝒎𝒉𝒓

Hiding: Information theoretically!

Binding: Follows from the Discrete Log assumption.
If  ∃𝑃𝑃𝑇 alg 𝐴 s.t.
𝐴 𝑔, ℎ = 𝑚., 𝑚1, 𝑟., 𝑟1 where 𝑔2!ℎ3! = 𝑔2"ℎ3" then 
𝑚. + 𝑠𝑟. = 𝑚1 + 𝑠𝑟1 mod p,
which implies that 𝑠 = 2!42"

3"43!
mod p



Constructing Zero-Knowledge Proofs

𝑖, 𝑗 ∈ 𝐸

Reveal 𝑐,, 𝑐-, with 
corresponding randomness

𝑃 𝑉
Randomly permute 

the coloring, to 
obtain valid 

coloring (𝑐#, … , 𝑐$)
Choose a 
random edge 
𝑖, 𝑗 ∈ 𝐸

𝐶𝑜𝑚5,6 𝑐. , … , 𝐶𝑜𝑚5,6(𝑐/)

𝑔, ℎ ∈ 𝐺

This is perfect ZK!
But only 

computationally 
sound 

Perfectly 
hiding

All powerful 
prover can 

break binding 



Interactive Computationally Sound Proofs 
(a.k.a. Arguments)

[Brassard-Chaum-Creapeau88]

𝑃 𝑉
𝑥 ∈ 𝐿

Completeness: ∀𝑥 ∈ 𝐿 Pr 𝑃, 𝑉 𝑥 = 1 ≥ 2/3

Soundness: ∀𝑥 ∉ 𝐿, ∀𝑷𝑷𝑻 𝑃∗ Pr 𝑃∗, 𝑉 𝑥 = 1 ≤ 1/3



So Far…

• Constructed ZK proofs for all of NP 
– using commitment schemes

• Constructed commitment schemes
– Based on injective OWF:  

computationally hiding, perfectly binding

– Based on Discrete Log: 
perfectly hiding, computationally binding

Computational 
ZK proofs

Perfect ZK 
arguments



Interactive Proofs are More Efficient!
[Lund-Fortnow-Karloff-Nissan90, Shamir90]

Example:  Chess



correctness of any computation can be proved:

Time to verify

Space required to do the 
computation

≈

Interactive Proofs are More Efficient!
[Lund-Fortnow-Karloff-Nissan90, Shamir90]

𝑰𝑷 = 𝑷𝑺𝑷𝑨𝑪𝑬

Interactive
Proof



correctness of any computation can be proved:

Time to verify

Space required to do the 
computation

≈

Interactive Proofs are More Efficient!
[Lund-Fortnow-Karloff-Nissan90, Shamir90]

Succinct space succinct interactive proof



Multi-Prover Interactive Proofs 
[BenOr-Goldwasser-Kilian-Wigderson88] 

𝑃! 𝑃"

𝑉

𝑞( 𝑞) 𝑎)𝑎(

Theorem [Babai-Fortnow-Lund90]:
Any proof can be made exponentially shorter 

with a 2-prover interactive proof!

motivated by 

constructing 

perfect ZK proofs

∀𝒇 computable in time 𝑻:
2-provers can convince verifier that 𝑓 𝑥 = 𝑦,

where the runtime of the  verifier is only 𝒙 ⋅ 𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝑻
and the communication is 𝒑𝒐𝒍𝒚𝒍𝒐𝒈(𝑻)



[Fortnow-Rompel-Sipser88]:  

𝑉

𝑞( 𝑞) 𝑎)𝑎(

𝑎# 𝑎' 𝑎( 𝑎) 𝑎# 𝑎' 𝑎( 𝑎)𝑃! 𝑃"



𝑉
[Feige-Goldwasser-Lovasz-Safra-Szegedy91, Babai-Fortnow-Levin-
Szegedy91, Arora-Safra92, Arora-Lund-Mutwani-Sudan-Szegedy92]

Probabilistically Checkable 
Proofs

Read only 3 bits of the 
proof, and obtain 

soundness 1/8



Classical proofs

(Zero-knowledge)  
Interactive proofs

Multi-prover 
interactive proofs

Probabilistically 
checkable proofs (PCPs)

Interactive PCP/
Interactive oracle proofs

Fiat-
Shamir 

paradigm

SNARGs




