Admin:

- Pset #3 due 4/5 (Mon)
- Take-home quiz out 4/5 due 4/21 (Wed)
- Projects
- Guest lecture by Jim Bidzos on 4/12 (Mon)

Today:

- Digital Signatures!
 - Diffie-Hellman concept of PK signatures
 - ACMA defn of security
 ("Adaptive chosen message attack")
 - Textbook RSA signatures
 - Hash & Sign (Full Domain Hash)
 - Schnorr ID scheme
 - Fiat-Shamir paradigm
 - Schnorr signatures
 - Digital Signature Algorithm (DSA) by NIST
Diffie & Hellman ("New Directions in Cryptography")
1976

- Gen(1^k) \rightarrow (PK, SK, M, C)
 - Ciphertext space
 - Message space
 \mid M \mid = \mid C \mid

- Enc(PK, \cdot) maps M to C \hspace{1cm} 1 to 1
 - Efficiently computable

- Dec(SK, \cdot) maps C to M \hspace{1cm} 1 to 1

Enc & Dec are inverse functions (given PK & SK)

- For signatures, we rename Enc as Verify, Dec as Sign

Sign
 \sigma = Sign(SK, m)
 \sigma = \text{signature on } m \text{ by } PK

Verify by checking if Verify(PK, \sigma) = m ?

Correctness: Verify(PK, \sigma) = m
 \text{if } \sigma = Sign(SK, m)
 \text{(Security defined in a bit...)}

Enc & Dec are trapdoor permutations
 (SK is trapdoor)
SK is "signing key"

PK is "signature verification key"

$$\sigma = \text{Sign}(SK, m)$$

Verify(PK, m, σ) ∈ {true, false}?

(Note: have pulled m inside as arg to Verify)

Security:

Signature scheme $(Gen, Sign, Verify)$ is secure against adaptive chosen message attack

if $(\forall \text{PPT } A)$ (Adversary)

$$\Pr \left[A^{\text{Sign}(SK, \sigma)}(PK) = (m^*, \sigma^*) \text{ such that } (PK, SK) \leftarrow \text{Gen}(1^\lambda) \text{ Verify}(PK, m^*, \sigma^*) = \text{true} \& m^* \text{ was not ever given to Sign} \right] = \text{negl}(\lambda)$$

i.e., Adversary cannot forge a new message/signature pair, even after having seen signatures for polynomially many messages of his choice.
Textbook RSA signatures:

- Gen$(1^x) \rightarrow (PK, SK, M, C)$

 \[PK = (n, e) \]

 \[SK = (n, d), \quad d = e^{-1}(\text{mod } \phi(n)) \]

- Sign$(SK, m) \rightarrow \sigma = m^d (\text{mod } n)$

- Verify$(PK, m, \sigma) = \text{true iff } \sigma^e = m (\text{mod } n)$

This is just basic RSA encryption "turned around"!

This is not secure against ACMA:

- if σ is signature for m

 then σ^2 is signature for m^2

- Worse: σ is signature for $m = \sigma^{-e} (\text{mod } n)$

How to fix?
Hash & Sign (aka Full Domain Hash)

Assume H is a hash function mapping messages (of arbitrary length) to \mathbb{Z}_n where H is modeled as "random oracle".

Idea: Sign $H(m)$ rather than m.

Note: This provides efficiency gains for long messages, as H is fast.

Claim: This scheme is now secure against ACMA in ROM, under RSA Assumption

$\text{hard to compute } x^d \text{ given } n, e, x \mod n \text{.}$

Note: $\text{Sign}(sk, m) = H(m)^d \mod n$

$\text{Verify}(pk, m, \sigma) = \text{true if } \sigma^e \equiv H(m) \mod n.$

Proof of claim (sketch):

- Without signing oracle, hard to compute any valid signature, since this requires breaking RSA assumption

- With signing oracle: Adv can compute transcript of requests to Sign himself, so he learns nothing from Sign. Idea: "program" H. Given m, choose $\sigma \in \mathbb{Z}_n$, compute $r = \sigma^e \mod n$, program $H(m) = r$, output σ as signature for m.
(If Adv asks for $H(m)$, where m previously untrusted, choose random $s \in \mathbb{Z}_n^*$, set $r = s^e \pmod{n}$ return $H(m) = r$).

Schnorr Signature Scheme

- Based on Schnorr Identification Scheme
- Fiat-Shamir paradigm
- Basis for NIST Digital Signature Standard.

Schnorr Identification Scheme

- Prove knowledge of x, for $PK = g^x$
- Group G has prime order
- g is a generator of G
- E.g. work mod p, where $p = q \cdot r + 1$
 and q is prime
- $G = \{ h^* \pmod{p}, h \in \mathbb{Z}_p^* \}$
- $|G| = q$
- To find g generator of G, choose $h \in \mathbb{Z}_p^*$, $h \not\equiv 1 \pmod{p}$; let $g = h^* \pmod{p}$.
- Typically p has 1024 bits (to defeat DL attacks)
- q has 160 bits (to defeat birthday attacks)
User has keypair (g^x, x) for $x \in \mathbb{Z}_q$.

Prover P

- $(\text{knows } x)$

- $k \leftarrow \mathbb{Z}_q$

- commit

- $r = g^k \pmod{\text{p}}$

Verifier V

- $(\text{knows } g^x)$

- $e \leftarrow \mathbb{Z}_q$ ("random challenge")

- challenge

- $g = k - xe$

- response

- $s = r / pk^e$

Accepts iff $g^s = r / (g^x)^e$

Note: $g^s = g^{k-xe} = r / (g^x)^e = r / pk^e$

Claim: Prover "must know" $SK \times x$ if he can answer most challenges $< e_i$, s_i

Proof idea: Suppose prover can answer e_1, e_2

\[g^{s_1} pk^{e_1} = g^{s_2} pk^{e_2} = r \]

\[(s_1 - s_2) / (e_1 - e_2) = pk \]

\[(s_1 - s_2) \text{ is } SK \times ! \]

Prover "knows" x!
Claim: Verifier gains no information about x. “Honest” (who picks e at random from \(\mathbb{Z}_q \))

Proof idea:

Verifier can generate transcript on his own! (from PK)

\[
\text{transcript} = (PK, r, e, s)
\]

How?

Verifier chooses e at random from \(\mathbb{Z}_q \)

s at random from \(\mathbb{Z}_q \)

computes \(r = g^s \cdot PK^e \)

(called Honest Verifier Zero Knowledge)

How to convert a three-round public coin ID protocol to a digital signature scheme?

Commit \(r \)

challenge \(e \) (e is “public coin”)

response \(s \)

Accept based on PK, r, e, s
Answer: \textbf{Fiat-Shamir heuristic}

Let \(e = H(m, r) \) \hspace{1cm} \text{ROM}

\(\text{Sign(SK, m)} = (r, e, s) \)

where \(e = H(m, r) \)

\(\text{Verify}(PK, m, (r, e, s)) \)

Accepts if verifier of ID scheme accepts

Claim: We can use Fiat-Shamir to convert

Schnorr ID scheme to a (secure)

Schnorr signature scheme. (secure against ACMA)

\(\sigma^- = (r, e, s) = (g^k, H(m, r), k - x \cdot H(m, r)) \)

Proof ideas:

Seeing signs of other messages is just like
Seeing attacks on ID protocol - just seeing
\(H(m, r) \) instead of verifier's \(e \). Zero-knowledge property of ID protocol gives attacker no benefit.

If Adversary can forge, he must be able to
Supply good response to many possible \(e \)'s
(possible \(H(m, r) \) values). This implies he "knows" \(SK \times x \).
Digital Signature Standard (DSA)

Like Schnorr signature scheme, except:

- r is computed as $g^x \pmod{p} \pmod{q}$ (for shorter signatures)
- $e = h(m)$ rather than $e = h(m, r)$

(This version not known to be secure in ROM. (Insecure in Schnorr but not known to be insecure in DSA)).
DSA details

Setup:
- \(q = 160 \) bit prime
- \(p = 1024 \) bit prime s.t. \(q \mid p-1 \)
- \(g = h^{(p-1)/q} \) generates group of order \(q \)

Gen:
- \(SK = x \in \mathbb{Z}_q^* \)
- \(PK = g^x \) \hspace{1cm} (PK=y below)

Sign:
- \(k \in \mathbb{Z}_q^* \) \hspace{1cm} (must be random & new!)
- \(r = (g^k \mod p) \mod q \) \hspace{1cm} restart if \(r = 0 \)
- \(s = \left(\frac{H(m) + xr}{k} \right) \mod q \) \hspace{1cm} restart if \(s = 0 \)
- \(\sigma = (r, s) \)

Verify (PK, m, \sigma):

Check that \(0 \leq r < q \) & \(0 < s < q \)

- \(w = s^{-1} \mod q \)
- \(u_1 = H(m) \cdot w \mod q \)
- \(u_2 = r \cdot w \mod q \)
- \(v = (g^{u_1} \cdot u_2 \mod p) \mod q \)

Accept iff \(v = r \)