Today: Encryption schemes

- One Time Pad (OTP)
 - Security: one-time vs. many-time security
 - Security against chosen plaintext attacks (CPA-security)
 - Impossibility 😞
 - Overcoming the impossibility by relying on hardness assumptions 🤔
 - Using hardness to generate randomness:
 - Define Pseudo Random Functions (PRFs) ← in practice AES is used as a PRF, AES will be covered in next lecture
 - Use PRF to construct a CPA secure encryption scheme

One-Time Pad [Gilbert Vernam 1917]

Syntax of encryption scheme: 3 probabilistic polynomial time (PPT) algorithms (Gen, Enc, Dec)

- Gen(L) outputs a secret key K (must be prob)
 - security parameter

- Enc takes as input a secret key K & a msg m ∈ M, and outputs a ciphertext C

- Dec takes as input a key K and a ciphertext C and outputs a msg m.

Correctness: ∀n ∈ N ∀m ∈ M

\[Pr[Dec(K, Enc(K,m)) = m] = 1 \]
K = Gen(L)

One-Time Pad:

- Gen(L) outputs a random secret key K ∈ {0,1}^L
- Enc(K,m) = K ⊕ M (xor coordinate-wise)
- Dec(K,C) = K ⊕ C

msg space M = {0,1}^L

Example:

K = (011010)

m = (101001)

C = Enc(K,m) = (110111) 📰

Dec(K,C) = (101001) ✓

Correctness: ∀K ∈ {0,1}^L ∀m ∈ {0,1}^L

Dec(K, Enc(K,m)) = K ⊕ (K ⊕ m) = (K ⊕ m) ⊕ m = m

Security: Perfect security!
\[\forall m \in \{0,1\}^n \quad \operatorname{Enc}(k, m) \in U_{10^{15}} \quad \Box \]

\[\Rightarrow (m, \operatorname{Enc}(k, m)) \equiv (m, U_{10^{15}}) \]

Even if \(m \) is known, the ciphertext \(\operatorname{Enc}(k, m) \) is random!

This may seem to be a strong requirement, after all \(m \) is not known...

However, the adv may have some information about \(m \) (such as the header).

Also, we do not want to assume that \(m \) is drawn from some distribution.

This seems to be a very strong security!

\(--\) Note: \(\operatorname{Enc}(k, m) \) does not hide \[\| m \| \]

```
length of m.
```

This is somewhat inherent.

Namely:

\[(m_1, m_2, \operatorname{Enc}(k, m_1), \operatorname{Enc}(k, m_2)) \neq (m_1, m_2, U_1, U_2) \]

In particular, given \(\operatorname{Enc}(k, m_1), \operatorname{Enc}(k, m_2) \) one can learn \(m_1 \oplus m_2 \).

\(--\) Goal: Many-time secure encryption scheme. \(\forall k \in \mathcal{K} \forall m \in \mathcal{M} \)

\[(m_1, m_2, \operatorname{Enc}(k, m_1), \ldots, \operatorname{Enc}(k, m_t)) \equiv (m_1, m_2, U_1, \ldots, U_t) \]

Impossible!

1. Intuitively, \(\operatorname{Enc}(k, m_1), \ldots, \operatorname{Enc}(k, m_t) \) give too much information about \(k \) (unless \(\mathcal{K} \) grows with \(t \)).

2. Also, impossible if \(\operatorname{Enc} \) is a deterministic function since then

\[(m, m, \operatorname{Enc}(k, m), \operatorname{Enc}(k, m)) \neq (m, m, U_1, U_2) \]

since \(\operatorname{Enc}(k, m) = \operatorname{Enc}(k, m) \).

To overcome the latter impossibility result we use **randomized encryption**

To overcome the first impossibility result we rely on *hardness assumptions*.

We cannot get many-time security against an all powerful adversary,

but we can get many-time security against a bounded (i.e., poly-time) adversary!

Modern cryptography!

We next define many-time security against a poly-time adv., known as
security against Chosen Plaintext Attacks (CPA)

Definition: An encryption scheme $(\text{Gen}, \text{Enc}, \text{Dec})$ is CPA secure if
\[
\forall n \in \mathbb{N} \quad \forall t = \text{poly}(n) \quad \forall m_1, \ldots, m_t \in \mathcal{M}
\]
\[
\left(\text{Enc}(K, m_1), \ldots, \text{Enc}(K, m_t) \right) \equiv \left(\text{Enc}(K, \mathcal{U}_1), \ldots, \text{Enc}(K, \mathcal{U}_t) \right)
\]
where $K \overset{\$}{\leftarrow} \text{Gen}(\lambda^n)$, $\mathcal{U}_1, \ldots, \mathcal{U}_t \in \mathcal{M}$, computationally indistinguishable.

Simplified Version!

In the typical definition each m_i can be adaptively and adversarially chosen after seeing $\text{Enc}(K, m_1), \ldots, \text{Enc}(K, m_t)$.

Definition: Two distribution ensembles $\left\{ A_{\cdot} \right\}_{a \in \mathcal{A}}$ and $\left\{ B_{\cdot} \right\}_{b \in \mathcal{B}}$ are

computationally indistinguishable if $\forall \text{PPT} \text{ distinguisher } \mathcal{D}$ there exists a negligible function $\mu: \mathbb{N} \rightarrow [0, 1]$
\[
\forall n \in \mathbb{N}
\]
\[
\left| \Pr_{x \leftarrow A_{\cdot}} [\mathcal{D}(x) = 1] - \Pr_{y \leftarrow B_{\cdot}} [\mathcal{D}(y) = 1] \right| \leq \mu(n)
\]

Definition: A function $\mu: \mathbb{N} \rightarrow [0, 1]$ is negligible if \forall constant $c \in \mathbb{N}$ there exists a constant $n_c \in \mathbb{N}$
\[
\forall n > n_c \quad \mu(n) \leq \frac{1}{n^c}
\]

Constructing CPA secure encryption scheme:

Idea: Use a random pad $K \overset{\$}{\leftarrow} \{0, 1\}^n$ to produce many random looking pads K_1, \ldots, K_t and use these to pad m_1, \ldots, m_t.

Namely: Use a short random string to generate many random (looking) strings.

Pseudorandom Function

A pseudorandom function F satisfies $\forall n \in \mathbb{N} \quad \forall t = \text{poly}(n)$
\[
\forall \text{distinct } x_1, \ldots, x_t \in \{0, 1\}^n
\]
\[
\left(F(K, x_1), \ldots, F(K, x_t) \right) \equiv \left(U_1, \ldots, U_t \right)
\]
for $K \overset{\$}{\leftarrow} \{0, 1\}^n$.

Simplified Version!

In the typical def, each x_i can be adversarial and adaptively chosen, seeing $F(K, x_1), \ldots, F(K, x_t)$.

Next class: We will see a candidate construction of a PRF: AES.

In theory, we know how to construct a PRF from one-way functions (non-CPA encryption from PRF)
Gen(\mathbb{F}): output random $k \in \mathbb{F}^{n \times n}$

Enc(k, m): Choose a random $r \in \mathbb{F}^{n \times n}$ and output $(r, \mathbf{f}_k(r) \oplus M)$

Dec(k, c): compute $\mathbf{w} = \mathbf{F}(k, r^T)$, output $\mathbf{w} \odot c$

(r, y)