
Massachusetts Institute of Technology Handout 4
6.857: Computer and Network Security April 21, 2021
Professors Ronald L. Rivest and Yael Tauman Kalai Due: May 10, 2021

Problem Set 4

This problem set is due on Monday, May 10, 2021 at 11:59 PM. Please note our late submission penalty
policy in the course information handout. Please submit your problem set, in PDF format, on Gradescope.
Your solutions to all problems should be written up in a single pdf. Have one and only one group member
submit the finished pdf containing the problem writeups. Please title the PDF with the Kerberos of your
group members as well as the problem set number. (i.e. kerberos1 kerberos2 kerberos3 pset2.pdf).

You are to work on this problem set in groups. For problem sets 1, 2, and 3, we will randomly assign
the groups for the problem set. After problem set 3, you are to work on the following problem sets with
groups of your choosing of size three or four. If you need help finding a group, try posting on Piazza or
email 6.857-staff@mit.edu. You don’t have to tell us your group members, just make sure you indicate
them on Gradescope. Be sure that all group members can explain the solutions. See Handout 1 (Course
Information) for our policy on collaboration.

Homework must be submitted electronically! Mark the top of each page with your group member names,
the course number (6.857), the problem set number and question, and the date. We have provided templates
for LATEX and Microsoft Word on the course website (see the Resources page).

Grading: All problems are worth 10 points.
With the authors’ permission, we may distribute our favorite solution to each problem as the “official”

solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in your profile on your
homework submission.

Problem 3-1. ZK problem

In this problem, we will consider two relaxations to the notion of zero-knowledge (ZK): witness-indistinguishability
(WI) and witness-hiding (WH).

Recall that in a ZK proof, the prover tries to convince the verifier that x ∈ L for some NP language L and
element x. Namely, the prover is equipped with a witness w such that (x,w) ∈ RL where RL is the NP
relation corresponding to L, and uses w to prove that x ∈ L. For example, you can think of the language L
as the language of all 3-colorable graphs, x ∈ L as specific 3-colorable graph, and w as a legal 3-coloring of
the graph x.

As we saw in lecture, in a ZK (interactive) proof the verifier learns nothing besides the fact that x ∈ L. A
WI (interactive) proof only guarantees that for every x ∈ L and for every two witnesses w1, w2 such that
(x,w1), (x,w2) ∈ RL the verifier cannot distinguish between a proof for x ∈ L that is generated using a
witness w1 and one that is generated using w2. For example, if a graph has two valid 3-colorings, a verifier
will not be able to distinguish between a prover who uses the first coloring as a witness and one who uses
the second coloring as a witness. In a WH (interactive) proof, the only guarantee is that verifier doesn’t
learn a witness from the protocol.

For more information of WI and WH proofs, check out the original paper where these notions were defined:
https://www.isical.ac.in/~rcbose/internship/lectures2016/rt02feigeshamir.pdf

Also, the Wikipedia entry for WI proofs may be helpful: https://en.wikipedia.org/wiki/Witness-in

distinguishable proof

(a) Argue that the hiding guarantee of ZK is stronger than that of WI and WH. Namely, argue that for
every NP language L, a ZK proof for L is also WI and WH.

(b) Does WI imply WH, or does WH imply WI? Namely, is it the case that for every NP language L, a
WI proof for L is also a WH proof for L, and vice versa? Explain why or why not.

Hint: consider the case where the elements in L have a single witness vs the case that they have
multiple witnesses.



6.857 : Handout 4: Problem Set 4 2

(c) Suppose a user wishes to prove knowledge of her secret key SK, associated with a public key PK.
Moreover, suppose that the user uses this secret key to decrypt messages sent to her using the
public key PK. Which proof should the user use so that the security of her ciphertexts would not be
compromised? Is WI enough? WH? ZK? Explain your answer.

Hint: think carefully about the precise guarantees of each security notion, and think of the hiding
guarantee needed for the encryption scheme to remain semantically secure.

Problem 3-2. Auditing an Election

In an election, voters cast ballots that indicate their single choice among the available options. In general,
we can consider n ballots cast, each ballot choosing one of t options. Assume that the outcome of the
election is determined according to a plurality vote. Then the outcome should be the option that received
the most votes. However, it is possible that the reported outcome is “incorrect” somehow. We will consider
false outcomes due either to error in tallying the cast ballots or election interference in reporting individual
ballots.1

Our goal is to give a way to audit elections to provide assurance in the reported outcome. In this problem,
you will play the role of an honest, one-person election authority.

Suppose you have just run an election with n = 100, 001 voters on a proposition. The proposition had t = 2
options. Reportedly, 60, 001 voters cast ballots for “yes” (type 1) and 40, 000 of them have voted “no” (type
0). You have 100, 001 paper ballots numbered 1 to 100, 001. The paper ballots determine the true type of
a cast vote. In particular, the ith ballot has a true type ai ∈ {0, 1} that you can determine with a hand
examination of the ballot.

However, paper ballots were run through a scanner and stored on a computer to report their type. The ith

ballot has a reported type ri ∈ {0, 1}, which may or may not be equal to ai; if the scanner is operating
correctly, they are equal, but if not they may differ. That is, the scanner may be faulty or compromised.

Because votes in this case are either 0 or 1, we can determine which option won the election by taking the
sum of all ballot types and determining if the sum is above or below 50, 000.5. The sum of the reported
values is 60, 001, indicating “yes” is the outcome of the proposition election. You wish to audit this election
by using a Bayesian audit. See

http://people.csail.mit.edu/rivest/pubs.html#MR19, and/or
http://people.csail.mit.edu/rivest/pubs/MR19.pdf

to read about this type of audit.2 You can find a description of such a method on page 8 of the following
article:

https://www.usenix.org/system/files/conference/evtwote12/rivest bayes rev 073112.pdf

At a high level, we can set up the problem as follows. You, as the election authority, have a collection C of
n paper ballots. The reported outcome is R. To audit the outcome, you want to estimate the probability
that similar collections C ′, also of size n, have outcomes different to R. That probability is what we need
to test if it is below some threshold probability of failure ε, set exogenously (for example, by election audit
laws). To generate similar collections C ′, this method involves initializing a sample of size s from the given
collection C and “restoring” the rest of the simulated collection C ′. A method called “Pólya’s Urn” is used
to restore the size of the simulated collection, which you can read about in the resources listed above. In
particular, Appendix A.2 of the conference paper is useful here.

1In this problem, we do not consider other ways for a reported outcome to differ from what it “should” be. One example
factor that could lead to such a difference is targeted voter suppression, which cannot be addressed by auditing paper ballots.

2Additional information can be obtained by Googling “Rivest bayesian audit.”



6.857 : Handout 4: Problem Set 4 3

(a) Write a program that audits an election using the method described above, printing either “OK” or
“Not OK” at a 95% confidence in the election outcome, which is ε = 0.05. In addition, it should give
the size s of the last sample that your program took.

Sadly, the more realistic numbers given above take far too long to audit. Instead, we will audit a
small election, with only n = 301 total votes cast, 90 of which are type 0 and the rest type 1. The
reported outcome is R = 1. Using your program, determine if the election is OK or not OK. At what
value of s did your program stop?

Please submit a copy of your code in the 3-2 Code submission on Gradescope.

(b) Give a brief, somewhat intuitive explanation of the profile simulation method. Although it is impor-
tant, don’t worry so much about getting bogged down in the details of Pólya’s Urn. Instead, consider:
what was the purpose of sampling s paper ballot types? What effect does treating that sample as the
first s draws of the urn have on the rest of the simulated ballot profile?

Problem 3-3. Proof of Work vs. Proof of Stake
Proof of Stake (PoS) has been proposed as an alternative to Proof of Work (PoW) for deciding the next block
in cryptocurrency blockchains. Unlike PoW, PoS does not require work in the form of hash computations
to “win” the right to add blocks to the chain, making it substantially more energy efficient. Instead, users
“win” the right to add new blocks to the chain based on how many coins they own in the currency, or
their “stake.” PoS protocols are typically more complex than PoW protocols, and they have quite different
trust assumptions.3 Despite this complexity, the low energy consumption and faster block times make PoS
protocols very attractive, and several mainstream currencies use it today. In fact, Etherium, a very popular
PoW cryptocurrency, is planning to switch to PoS!

In this problem, you’ll look at some of the main differences between PoW and PoS from a performance and
security perspective. To simplify PoS slightly, we will consider the case where each coin in the currency has
a corresponding public and private key that can be used to prove ownership of the coin.

(a) Eve’s get rich quick scheme
Eve is convinced that the best way to make money on cryptocurrencies is by earning the block reward.
A block reward is a small amount of coins given to whichever user adds the next block to the chain.
In order to do this she wants to increase her chances of being selected to propose the next block as
much as possible. Her options are:

1. Invest in some ASICs for fast computation of hashes.

2. Invest in the currency itself by purchasing coins.

3. Lie shamelessly and claim to have been chosen to select the next block.

Which of these options would be most useful to Eve in a PoW protocol? Which would be most useful
in a PoS protocol? Explain your answer.

(b) Liveness
In PoW cryptocurrencies like Bitcoin, miners are working hard computing hashes to discover the next
block. Once found, they quickly announce it to let everyone know that they won the competition and
the miners can move on to the subsequent block. Imaging a PoS scheme where the winner, who is
allowed to choose the next block, is selected by picking a single coin from the currency uniformly at
random.4 Whichever user can demonstrate ownership of the selected coin is the winner and chooses
the next block, announcing their choice to all other users. This scheme correctly satisfies the condition
that users are selected with probability directly proportional to the number of coins they own, but it
still isn’t perfect. An obvious security concern is the case where a malicious user has been chosen to

3See this article for a high level description of PoW and PoS: https://www.kraken.com/en-us/learn/proof-of-work-v
s-proof-of-stake Note that the hardware requirements they list for both PoW and PoS are more like suggestions for good
performance and are in no way requirements for either PoW or PoS.

4This can be implemented by hashing the last block which outputs a pointer to one of the coins.



6.857 : Handout 4: Problem Set 4 4

select the next block, but the scheme also has an inconvenient performance issue that isn’t present in
PoW.

How might “liveness,” or availability of users, impact the block selection time in this scheme? Why
is this not an issue in PoW schemes?

(c) Forking
In the last part we saw that choosing only a single user to propose the next block might have liveness
concerns for a PoS cryptocurrency. In PoW, whoever first manages to compute a hash of the specified
format gets to mine the next block and announce it to the rest of the users. All the users will then
gossip about the new block until everyone is aware of it.

Suppose we tried to incorporate this method into PoS. That is, instead of choosing only one coin
uniformly at random, choose 100 coins and any of the users who own the selected coins will be able to
propose the next block. Like in PoW, honest users will accept the first valid block they hear about
as the next block on the chain. In PoW, validity is decided based on the hash of the block, while in
this PoS proposal a block is valid if and only if it was proposed by a user who owns one of the 100
selected coins.

What could go horribly wrong if this idea was used? (Hint: Note that the title of this question is
“forking.”)


