
Massachusetts Institute of Technology Handout 3
6.857: Computer and Network Security March 9, 2021
Professors Ronald L. Rivest and Yael Tauman Kalai Due: March 24, 2021

Problem Set 2

This problem set is due on Wednesday, March 24, 2021 at 11:59 PM. Please note our late submission penalty
policy in the course information handout. Please submit your problem set, in PDF format, on Gradescope.
Your solutions to all problems should be written up in a single pdf. Have one and only one group member
submit the finished pdf containing the problem writeups. Please title the PDF with the Kerberos of your
group members as well as the problem set number. (i.e. kerberos1 kerberos2 kerberos3 pset2.pdf).

You are to work on this problem set in groups. For problem sets 1, 2, and 3, we will randomly assign
the groups for the problem set. After problem set 3, you are to work on the following problem sets with
groups of your choosing of size three or four. If you need help finding a group, try posting on Piazza or
email 6.857-staff@mit.edu. You don’t have to tell us your group members, just make sure you indicate
them on Gradescope. Be sure that all group members can explain the solutions. See Handout 1 (Course
Information) for our policy on collaboration.

Homework must be submitted electronically! Mark the top of each page with your group member names,
the course number (6.857), the problem set number and question, and the date. We have provided templates
for LATEX and Microsoft Word on the course website (see the Resources page).

Grading: All problems are worth 10 points.
With the authors’ permission, we may distribute our favorite solution to each problem as the “official”

solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in your profile on your
homework submission.

Problem 2-1. Authentication

MACs are a powerful technique for achieving authentication, and are used to construct CCA-secure encryp-
tion schemes. In this problem, we shall focus on MAC schemes and their security. We will walk you through
the basic idea behind the Galois Counter Mode (GCM). We won’t cover GCM in lecture or recitation, but
it is one of the industry standards of authenticated AES. It is quite popular, as it does a better job of
leveraging parallel processing. If you would like to learn more about GCM, we encourage you to check out
the following video: https://www.youtube.com/watch?v=g_eY7JXOc8U

(a) Consider the following MAC scheme: First, we associate with each message M the homogeneous
polynomial fM (x) = M [1]x + M [2]x2 + ... + M [L]xL defined over the finite field GF (2128), where
M [1],M [2], . . . ,M [L] ∈ {0, 1}128 form a partition of the message M into chunks, each of length
128 bits (we assume that the length of M is a multiple of 128; as we saw in class, by padding M
appropriately, this assumption is without loss of generality). Consider the MAC scheme defined by
MAC(a, b,M) = fM (a) + b, where (a, b) is the MAC key, where a and b are chosen independently at
random from GF (2128).

A MAC scheme is said to be one-time secure if a PPT adversary cannot generate an accepting MAC for
any message M , after seeing a MAC for a single message M ′ 6= M of its choice (except with negligible
probability). Namely, it is one-time secure if it is secure according to the definition presented in class
(secure against adaptive chosen message attacks) but where the adversary is restricted to query its
oracle only once.

1. Argue that the MAC scheme defined above is one-time secure.

2. Suppose we fix b to be 0. Is the scheme now one-time secure? If so, explain why. If not, provide
a counterexample.

3. Is the scheme many-time secure (namely, secure against adaptive chosen message attacks, as
defined in class)? Explain why or why not.
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(b) Let’s look at a general method for converting a one-time secure MAC to a many-time secure MAC.
Fix any one-time secure MAC scheme MAC and a pseudorandom function (PRF) F . Consider the
randomized (many-time) MAC scheme MAC ′ defined by:

MAC ′(k1, k2,M ; r) = (r, F (k1, r)⊕MAC(k2,M)),

where k1 and k2 are randomly and independently chosen keys, M is the message being MACed, and
r is the randomness used to generate the MAC.

1. Show that MAC ′ is (many-time) secure.

2. Would MAC ′ remain (many-time) secure if we used keys k1 and k2 where k1 = k2? If yes, explain
why. If not, provide a counterexample by constructing a one-time secure MAC and a PRF F ,
such that the corresponding MAC ′ is insecure.

Problem 2-2. Collisions!

In this problem, we will explore finding and analyzing collisions in greater detail. It is often desired that
hash functions be collision-resistant. One hash function (designed by Prof. Rivest) that has been utterly
broken in terms of its collision-resistance is the MD5 hash function.1

(a) Using the fastcoll software,2 find a MD5 collision for two messages with an identical prefix. That is,
select a prefix string p of your choice (such as p = “crypto is fun!”) and run fastcoll on your prefix
to output two messages m1 and m2. m1 and m2 will be of the form mb = p||xb where x is a binary
blob generated by fastcoll. Importantly, x1 6= x2 despite the fact that MD5(m1) = MD5(m2).

Once you have m1 and m2 from the output of fastcoll, append a suffix to both files. As with the
prefix, the suffix s can be a string of your choice, such as s = “collision resistance is hard :( ”. Now
you have messages m1 = p||x1||s and m2 = p||x2||s. Does MD5(m1) = MD5(m2) still?

For this part please submit your two files that were output by fastcoll and provide a short ex-
planation of why appending a suffix to these files didn’t change the fact that they share the same
MD5 hash value. The filenames for your collisions should have the same format as your pdf: ker-
beros1 kerberos2 kerberos3 m1 and kerberos1 kerberos2 kerberos3 m2

Help with fastcoll: for all platforms, usage should be fastcoll prefix file where “prefix file” is
a file containing your prefix text string. It will output two files, “md5 data1” and “md5 data2”, that
have the same MD5 hash and begin with the string from “prefix file”.

To install on Linux/Mac you will need: git, cmake, gcc, g++

First clone the repository using git: git clone https://github.com/upbit/clone-fastcoll.git

Next, while in the clone-fastcoll directory, build the fastcoll executable by running make.
If you have problems building or running fastcoll please ask on Piazza!

To concatenate two files you can use cat. Running cat prefix suffix > out will produce a file
named ”out” such that out = prefix||suffix.

To check the MD5 hash of two files you can use openssl as: openssl dgst -md5 file1 file2

(b) Your attack in the previous part generated a collision with two messages that shared the same prefix.
However, it is also possible to generate collisions that do not share a common prefix. A chosen prefix
attack allows the generation of collisions with different prefixes. In this case, an adversary could
generate MD5 collisions such that MD5(p1||m1) = MD5(p2||m2) where p1 6= p2. Give an example
of how this might be more advantageous to an adversary than an identical prefix attack and explain
your reasoning.

1The MD in MD5 stands for “message digest,” which is the older terminology used for secure hash functions — hence MD5
here, versus “secure hash” functions like SHA256.

2Linux/Mac: https://github.com/upbit/clone-fastcoll

Windows: http://www.win.tue.nl/hashclash/fastcoll_v1.0.0.5.exe.zip



6.857 : Handout 3: Problem Set 2 3

To help you with this, please refer to the 2012 paper by Stevens et al.3

For the remainder of this problem, we turn to an interesting application: detecting a certain kind of malware.
Cryptographic software is seldom coded new; it is typically obtained from libraries. It can be hard to tell
if cryptographic software has been hacked or modified by an adversary who has access to it in the software
supply chain, since it typically produces “random-looking bits.”

How can you tell that it has been hacked? One way might be to notice that the software does not interoperate
with other software libraries. That does not work, however, if the software operates on its own (e.g. think
of a file-encryption application that executes without calls to software beyond itself).

Here we will theoretically analyze another way for detecting malicious modification with a specific compro-
mise. Suppose we are using a library to implement Enc(k,m), an encryption of message m with key k.
Suppose for concreteness that m and k each have 128 bits. In a key-shrinking attack the provided (hacked)
functionality actually implements Enc(f(k),m), where f(k) is some sort of compression or shrinking func-
tion, such as f(k) = Enc(0, k) mod 2t, the rightmost t bits of the encryption of the “message” (the old key
k) with “key” 0 (all zeros). Thus, f(k) “looks random” but has only t bits of entropy. This is a nasty attack
since encryption seems to work fine at a first glance, but an adversary only has to check 2t keys to break the
encryption.

(c) Assume messages and keys are n bits long, but the compromise shrinks the effective key space to size
2t for some t ≤ n. Suppose you wish to test some potentially-compromised encryption software for
the presence of such key-shrinking malware. How much time and space is required to do so with a
reasonable level of confidence? You may assume calls to the encryption software are a constant-time
subroutine (the software should run in polynomial time, so your result here will be correct up to a
polynomial factor).

(Hint: model keys as being drawn uniformly at random from all t-bit strings and apply the birthday
paradox.)

Problem 2-3. AES and Finite Fields In AES, we think of the bytes as elements in the finite field GF (28).
In this problem, we will consider AES over a different finite field, and try to figure out what modifications
(if any) are needed.

(a) As a warm up, we will first get some practice with finite field operations. For the following parts, the
field in question is GF (28) defined by the polynomial m(x) = x8 + x4 + x3 + x1 + 1. Note that this
is the same field used in AES (albeit, as is true for all finite fields, there is a single finite field (up to
isomorphism) with 256 elements). I.e., all operations take place in GF (28), which are different than
(normal) byte operations.

1. Compute 65 + D1 and 65 · D1 in GF (28).

2. Calculate the (multiplicative) inverse of 4B in GF (28).

For the last part of this problem, we will redesign AES to use 16-bit values instead of 8-bit values.
Recall that AES operates on a 4 × 4 array of bytes (elements of GF (28)) called the State. It gets
initialized with the 128 bits of the input message, and its final state corresponds to the 128 output
bits (the ciphertext). In this problem, we will consider a variant of AES where the state is a 4 × 4
array of elements of GF (216) instead of GF (28) (so, the block size is now 4× 4× 16 = 256 bits).

The AES S-box works by first computing the inverse of a non-zero byte x (if the byte is zero, use x
directly instead): S0(x) := 0 if x = 0, else x−1.

Then, an affine transformation T is applied to S0(x). So, the mapping defined by the S-box is
S(x) := T (S0(x)). Two important properties satisfied by S are that S(x) 6= x (no fixed points) and
S(x)⊕ x 6= FF (no ”opposite-fixed” points).

3Stevens, Marc, Arjen K. Lenstra, and Benne de Weger, “Chosen-prefix collisions for MD5 and applications,” Int. J. Applied
Cryptography, Vol. 2, No. 4, 2012. https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
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(b) We consider a transformation S defined a bit differently on GF (216) as follows, using S0 defined as
above (but for elements x in GF (216)):

S(x) = f−1(f(x)⊕ c)

where c is a fixed non-zero constant in GF (216), and where f = S0 is a one-to-one function defined
on GF (216).

Argue that S has no fixed-points for any one-to-one function f .

Argue that c can be chosen so that S has no opposite fixed-points, either. (For the definition of
opposite fixed points, we use FFFF rather than FF , since we are working over GF (216) now; no
opposite-fixed points now means S(x)⊕ x 6= FFFF).


