ANALYZING GOOGLE CHROME EXTENSION BOTNET
EXPLOITS

SELENA FENG, LINDA GONG, HELEN HE

ABSTRACT. Botnets are an increasingly popular way of exploiting Google Chrome
Extensions. There are two main phases to executing a botnet via Chrome Exten-
sions. The first phase is user adoption and the second phase is botnet execution.
In this paper, we analyze a variety of botnet exploit and assign them a rela-
tive level of ease, depending on their phase. Finally, we aggregate our work to
determine the level of ease that Chrome itself can be exploited, recommending
different types of solutions. Our hope is to increase user awareness of the dangers
in popular browser product Google Chrome.

1. INTRODUCTION

Google Chrome is quickly becoming the web’s most popular browser, boasting
about 64.92% of the world’s internet traffic. |[bro]. Chrome is also a very powerful
browser; it’s power is closer to that of an operating system, offering a wide variety
of user engagement opportunities, including the option of browser extensions which
creates additional browser functionality for users. These extensions are surprisingly
powerful and can have a great variety of privileges and permissions. With the increas-
ing popularity and power of Google Chrome extensions and the widespread usage of
Chrome, botnet exploits have become more and more prevalent. Botnets need two
things: an army of users and computation power per user. Given Google Chrome’s
popularity, it is a natural vehicle to aid the spread of the botnet program. Chrome’s
computing power also provides a great resource to power botnets. Hence, the general
roadmap that malicious botnet Chrome extensions follow is to first get widespread
user adoption of the extension, avoid user datection, then use the obtained computing
power to accomplish various, often malicious tasks.

Some well-known cases of botnet exploits include Digmine, FacexWorm and Nigelify
[BS] [Che] [RS]. Digmine was a cryptocurrency mining botnet that spread through
Facebook Messenger via an executable video file, completely bypassing the Google
Chrome Web Store. The executable modified Google Chrome configurations and
downloaded the malicious extension into Chrome, finally utilizing Chrome’s resources
to both spread itself further and mine cryptocurrency. FacexWorm operated very
similarly by social engineering its userbase via Facebook and conduct a variety of
malicious cryptocurrency mining exploits. Nigelthorn, while also a cryptocurrency
mining botnet, spread via internet virality. The original extension that the mal-
ware piggybacked off, Nigelify, replaced pictures in Chrome with a picture of Nigel
Thornburry. Nigelthorn abuses Nigelify by running an executable that modifies the

1

2 FENG, GONG, HE

existing, legitimate extension’s code to include malicious JavaScript that mines for
cryptocurrency.

Of course, not all existent botnets mine for cryptocurrency. Many perform other
attacks, including DDoS services for sale, email spam campaigns, and user credential
farming. In this paper, we will be analyzing various flavors of botnet exploits. We
separate these exploits into two phases: phase 1 - user adoption, phase 2 - botnet
execution. Within each phase, we explore a variety of attacks, assigning each a relative
level of ease. The relative levels of ease are inversely proportional to the complexity of
the attack. Our methodology will involve analyzing Chrome Extension infrastructure,
designing conceptual attacks, and looking at past/existing botnet extension attacks.

2. CHROME EXTENSION ARCHITECTURE

Most browser extensions follow the Javascript Engine (JSE) model where exten-
sions consist of a set of scripts, usually written in Javascript. Chrome extensions, in
particular, consist of three components - the manifest file, event pages, and content
scripts. There can also be additional files, e.g., HT'ML files or style sheets, as long as
they are declared in the manifest file. The manifest file specifies which permissions
and URLs the extension has access to [PHI18|. Event pages are the intermediaries
between the manifest file and the content scripts. Event pages access browser con-
texts using APIs and do not have access to the DOM (Document Object Model, a
programming interface that defines the structure of the objects in an HTML or XML
document). Content scripts are Javascript files that are injected onto webpages and
have unrestricted access to the DOM. Figure [I| shows a diagram of the architecture
of Chrome Extensions.

DOM content script «——— |event pages «——— manifest file

FicURE 1. A diagram of the architecture of Chrome Extensions.

2.1. Permissions. Without even explicitly requesting or stating in the manifest,
Chrome Extensions have a powerful number of privileges. Chrome Extensions are, by
default, allowed to run background scripts, make XMLHttpRequests, do pageActions
(run a script depending on the user’s actions on a page), do browserActions (adding

ANALYZING GOOGLE CHROME EXTENSION BOTNET EXPLOITS 3

icons and popups in the toolbar), override certain webpages with custom HTML,
and message pass from the content script to the parent extension, and autoupdate
extensions. [chr] While a developer can’t do too much harm without more explicit
permisisons, you can certainly write a malicious extension that communicates with a
malicious server and causes mischief for the user, e.g. overriding a user’s homepage.

As mentioned before, the Chrome Extension manifest file contains the explicit
permissions which can give the extension quite a lot of power and cause it to be
quite harmful. Figure |2 displays all the possible Chrome Extension permissions and
highlights some particularly alarming ones.

"clipboardRead", "clipboardWrite",

"cookies", "debugger", "declarativeContent",

"declarativeWebRequest", "desktopCapture", "displaySo
n "downloads", "enterprise.deviceAttributes",

"enterprise.hardwarePl "enterprise.platformKeys", "experimental",
"fileBrowse fileSystemProvider", "fontSettings", “gcm”, "geolocation™,
"history", "identity", "idle", "idltest", "management", "nativeMessaging",
"networking.config", "notifications", "pageCapture", "platformKeys", "power",
"printerProvider", "privacy", "processes", "proxy", "sessions", "signedInDevices",
"storage", "system.cpu", "system.display", "system.memory", "system.storage",
"tabCapture”, "tabs", "fopSites", "tts", "ttsPngine", "unlimitedStorage”,
"vpnProvider", "wallpaper", "webNavigation", "webRequest", "webRequestBlocking"

FIGURE 2. All possible Chrome Extension permissions. [ext] We
have highlighted some permissions that we found particularly alarm-
ing.

For example, if an extension has access to the webRequest permission, it is able to
read user web requests and make web requests on the user’s behalf. This is a particu-
larly dangerous permission if we consider the fact that many user passwords are sent
via plaintext in a webRequest. Furthermore, the extension is allowed to read users’
private messages to each other. Since the extension is already allowed to communicate
with outside servers, this allow the extension to farm for user credentials. Another
way that an extension can fake user credentials is through the cookies permission,
which allows the extension to login as the user on various social media websites with-
out even going through the trouble of phishing for user credentials. This could be an
easy way for an extension to social engineer more users. Another disturbing permis-
sion is the activeTab permission which gives the extension almost complete control
over the current active tab of the user. This means the extension could block the
user’s access to the Chrome Extensions management page, which would prevent users
from deleting the extension. Indeed, even benign Chrome extensions, such as Stay-
Focusd, which is a productivity extension, is able to block access to the extensions
management page.

3. EVALUATION METHODOLOGY

As mentioned before , we will analyze extensions through designing conceptual
attacks and examining known botnet extension attacks. We have separated botnet

4 FENG, GONG, HE

attacks into two phases: Phase 1 is user adoption and Phase 2 is botnet execution.

For each of these phases, we have come up with a list of criteria by which we judge

the ease of attack. For each criteria, there are three levels: easy, medium, and hard.
Phase 1: User Adoption Criteria

(1) How many steps a user needs to take to download the malicious extension
(2) Detectability of extension during the downloading process

(3) Speed at which the extension spreads from user to user (an Ry of sorts)
(4) How easily will extension with exploit get published into Chrome Store

Phase 2: Botnet Execution

(1) How many steps the user (i.e. the one who downloaded the extension) needs
to take for exploit to succeed

(2) Detectability of extension during exploit

(3) How frequently can attack be done on user

(4) How many Chrome Extension permissions does exploit require?

(5) How easily extension with exploit will get published into Chrome Store

The final ease of the exploit will be determined by the aggregation of its criteria.
We chose the criteria for Phase 1 based on general principles by which determine how
easily something spreads. We chose the criteria for Phase 2 based on the best ways
we thought of to quantify the complexity of an extension.

4. USER DISCOVERY

Perhaps the largest challenge present to malicious actors is to successfully obtain
a large victim user base. Malware authors use a number of tactics to acquire users
and keep the compromised extension in their browser.

4.1. Initial Installation. The lowest-effort way to acquire a large user base is to buy
an extension from a legitimate developer. There are a number of examples where a
malicious entity purchases an extension to serve adware to the thousands of users who
already have the extension installed such as YouTube Queue, Particle for YouTube,
Typewriter Sounds, and Twitch Mini Player [Cimb]. Extension developers who don’t
outright sell their software may sometimes fall victim to phishing attacks of their
Chrome Web Store credentials such as in 2017 when over one million browsers were
affected by the popular Web Developer extension being compromised [Ped].

Other attackers may choose to build an extension and put it on the Chrome store.
While Google does claim to vet all code before it is published, many malicious ex-
tensions make it through the initial vetting process - just this February, researchers
announced more than 500 malicious extensions on the Chrome Web Store linked to a
single malvertising campaign which had been installed by millions of users. One pop-
ular attack vector for extension installation is to instruct users to install a Chrome
extension so they can view some sort of content, for example a video on a fake
YouTube page. Once an extension has been installed, it can phish the social media
cookies of its users to log in and send links to the user’s friends and acquaintances
[RS].

If the user has acquired malware on their machine through some other attack
vector like a trojan, the malware can also continuously attempt to install a malicious

ANALYZING GOOGLE CHROME EXTENSION BOTNET EXPLOITS 5

Chrome extension in the background [BS]. Even though Google disables non-Web
Store extensions in sufficiently recent versions of Chrome, there are still ways to get
around this by enabling developer mode or creating registry policies.

4.2. User Retention. Depending on the type of exploit, it can be incredibly difficult
for the user to notice a compromise has occurred. With the correct permissions, the
extension could block access to the extension management tab and make it difficult
for the user to get rid of anything installed. The Nigelthorn malware used this tactic
(code displayed in Figure |3]) to prevent users from uninstalling [RS].

if(tab.url.protocol == "chrome:" && tab.url.host == "extensions"){
blocked(tab);

F1GURE 3. Blocking access to extension management

With access to the history permission, an extension could selectively delete portions
of a user’s browsing history to cover up its tracks. Without any visible evidence of
activities their browser has been used for, it is unlikely a user would even realize there
is a malicious extension installed. While a user could theoretically inspect all outgoing
packets, that would require a level of technical effort that we deem unrealistic.

Extensions which exploit social media posts to reach a wider audience can also
block the user from URLs which would delete or edit these posts. While this sort of
retention tactic is more heavy-handed and noticeable by the user, it may work well
on targets who don’t realize a browser extension is the source of their issues.

If there is supporting malware in the victim’s computer, even after removing the
offending Chrome extension the malware may continuously re-install it. In addition,
the malware could exploit Google’s registry policies to block uninstallation and create
additional admin profiles [Abr].

5. BOTNET EXECUTION EXPLOITS

A botnet is a collection of compromised internet-connected devices that allow a
botmaster to carry out certain attacks on a large scale. In this section we explore
some common attacks and evaluate them with respect to our methodology .

5.1. Cookie Stuffing. Cookie stuffing is an attack where the browser extension
adds information to the user’s cookies. There were two Chrome extensions that used
cookie stuffing to add a parameter to the user’s cookies when they visited certain
websites; this addition allowed the attackers to ”earn a commission from any pay-
ments users made on the sites”. [Cima] These extensions masqueraded as ad blocker
extensions with similar names to reputable ad blockers, i.e., AdBlock from AdBlock,
Inc (versus AdBlock from AdBlock) and uBlock by Charlie Lee, which caused many
users to install these extensions (AdBlock had over 800,000 installs and uBlock had
over 850,000). However, the extensions stopped working if the user accessed Chrome
Developer Tools, and Google removed these extensions from the Chrome Store in
September 2019.
Here are the evaluation results.

FENG, GONG, HE

How many steps the user needs to take for exploit to succeed: 1 (just need
to download it from the Chrome store)

Detectability of extension during exploit: Difficult (the extensions actually
do block ads, since they were based on the actual AdBlock code, and the
names were very misleading; in addition, users rarely examine their cookies
or are notified about the contents of the cookies, which makes cookie stuffing
difficult for users to detect)

How frequently can attack be done on user: Frequently (doesn’t take much
CPU processing power to just add a parameter to a cookie)

How many Chrome Extension permissions does exploit require?: 2 (activeTab,
chrome.cookies)

How easily extension with exploit will get published into Chrome Store: Easy
(the extensions look like legitimate ad blockers)

5.2. Phishing. Another type of attack that can be carried out using Chrome Exten-
sions is phishing attacks, especially ones based on iframes. It has been shown that it
is easy to carry out an iframe phishing attack that substitutes a legitimate HTTPS
website’s webpage with the attacker’s webpage without changing the URL of the ac-
tual webpage or changing the lock icon in the browser address bar that indicates the
security of the page. [PHIS| Attackers were actually able to substitute the Facebook
login page with a malicious Phishbook page, as shown in Figure [d] while keeping the
Facebook URL; this makes it difficult for users to detect that the webpage they are
looking at is illegitimate, which makes it easy for attackers to phish sensitive user
information.

Phishbook helps you connect and share with Create an account on
the people in your life. Phishbook

It's free and always will be

Birthday

* Month v Yesr v

Female Male

Creats a Page for a celebrity, band or business.

FIGURE 4. Example of an iframe based phishing attack using Google
Chrome Extensions. The Facebook URL is uncompromised, as is the
lock icon in the address bar. [PHIS]

ANALYZING GOOGLE CHROME EXTENSION BOTNET EXPLOITS 7

Another example of phishing attacks using Chrome Extensions include phishing
credit card information by injecting phishing scripts that create an iframe pop-up
on a legitimate webpage that asks users for their credit card details. [Gat] Once
users submit their information to the form, the information is sent to an ”exfiltration
server” hosted on a Russian server. [Gat] An example of an iframe pop-up that was
used can be seen in Figure

Clean Checkout page Checkout page injected with skimmer
Payment Options 2) Payment Options
n Delivery (Pincode Required) Cash On Delivery {(Pincode Required)
PAYTM rayim PAYTM raytm
Credit Card / Debit Card % Credit Card / Debit Card
Then you will be redirected to PayuCheckout websiie Card Number | |

when you place an order.

Name on Card | |

{Emall Id 1= mandatory for prepald order)
i RN J CVV Number | |

Expiry Date | Month v i Year r i

Then you will be redirected to PayuCheckout website
when you place an order.

(Emall Id Is mandatory for prepaid order)

FIGURE 5. Example of an iframe pop-up that tries to phish credit
card information. [Gaf]

Here are the evaluation results.

e How many steps the user needs to take for exploit to succeed: 1 (just need
to download it from the Chrome store)

e Detectability of extension during exploit: Moderate to difficult (from ex-
amples - legitimate URL and lock icon are uncompromised; however, in the
credit card phishing attack, if the user notices that the payment is supposed
to show up on a new page, they can avoid the attack)

e How frequently can the attack be done on user: Frequently (doesn’t take
much CPU processing power to have an iframe pop-up that just sends a
POST request once a user enters some information)

e How many Chrome Extension permissions does exploit require?: 2-5 (ac-
tiveTab, webRequest, optional: contextMenus, system.display, chrome.identity)

8 FENG, GONG, HE

e How easily extension with exploit will get published into Chrome Store: Easy
to medium (iframes generally look harmless/normal)

5.3. DDoS. DDoS (Distributed Denial of Service) attacks make machines or network
resources unavailable to users by flooding a target with Internet traffic. For example,
an extension could obtain the URL of the webpage the user is currently using, and
then send a flood of HTTP requests to the user and prevent the user from using
their browser normally. [LZC] This is quite easy to implement and does not require
many permissions; however, is a bit abnormal in that it does not seem to lead to any
obvious financial gain for most attackers (unless they directly benefit from disrupting
traffic to a particular service).

Some botmasters sell large botnets to buyers who wish to attack other services, so
the command and control (C&C) servers need some way of communicating a target
to the extension because it would likely not be hard-coded into the extension itself.
In many botnets, there are complicated dynamic naming protocols which obfuscate
which server is actually giving commands making it difficult for an outside attacker to
take down the botnet by targeting C&C servers. However, Chrome extensions have
an included update_url field which allows for the browser to query some third-party
host for updates to the extension - this is a natural channel for C&C servers to send
new instructions to the bots.

Here are our evaluation results.

e How many steps the user needs to take for exploit to succeed: 1 (just need
to download it from the Chrome store)

e Detectability of extension during exploit: Moderate to difficult (making
HTTP requests is very cheap for web clients, so this attack doesn’t signifi-
cantly slow down or otherwise impact a user’s machine)

e How frequently can attack be done on user: Frequently (doesn’t take much
CPU processing power to spam HTTP requests)

e How many Chrome Extension permissions does exploit require?: 2 (activeTab,
webRequest)

e How easily extension with exploit will get published into Chrome Store:
Medium (the DDoS attack can probably be hidden in the code of a legiti-
mate extension, but is not guaranteed to be unnoticeable - in order to receive
a target from the CC server, there would need to be some communication
with the server itself)

5.4. Cryptocurrency Mining. Google Chrome extensions can also be exploited
to mine cryptocurrencies. One example is the cryptocurrency mining bot called
Digmine that spread using Facebook Messenger.[BS] The extension would send users
a video file that was actually an Autolt script that would send links to the victims’
network via Messenger. The malware would then install a miner module on the user’s
machine, which would then use the botnet to mine cryptocurrency. FacexWorm
was another malicious extension; similar to Digmine, FacexWorm used Facebook
Messenger to propagate and install mining modules, but FacexWorm also tried to
”hijack transactions in trading platforms and web wallets by replacing the recipient
address with the attacker’s” [Chel.

ANALYZING GOOGLE CHROME EXTENSION BOTNET EXPLOITS 9

While mining is traditionally a noticeably CPU-heavy activity, the extension could
restrict mining to only-at-night, or even only while the CPU is under a certain thresh-
old if there was additional malware on the machine.

Here are our evaluation results.

How many steps the user needs to take for exploit to succeed: 2-3 (depends
on the attack)

Detectability of extension during exploit: Moderate (it’s difficult for the
user to figure out that they’ve been added to a botnet, but they could notice
suspiciously high CPU usage compared to the past)

How frequently attack can be done on user: Infrequently (this is a trade-
off with detectability, as the user would likely notice if their computer was
suddenly mining 24/7)

How many Chrome extension permissions does exploit require: 24 (ac-
tiveTab, webRequest, and potentially others, depending on the nature of
the attack)

How easily extension with exploit will get published into Chrome Store:
Medium to hard (Chrome banned bitcoin-mining extensions as of June
2019, so any malware which installed a mining module would have to be well
hidden)

5.5. Email Spamming. Email spamming is when attackers send spam emails to
victims, often using botnets that receive spamming commands from the attacker.
The bots can send the emails at various rates; a high rate will cause more short-
term damage, while sending sporadic emails will make detection more difficult. An
example of an email spamming attack using Google Chrome Extensions is to access
the DOM of the webpage of websites with email services. When a user composes an
email, the attacker can access the editing area that the user is writing the email in;
when the email is sent, the email contents are saved in the DOM, so the attacker can
add some spam content to the email contents before the email is sent. [LZC| Here
are our evaluation results.

How many steps the user needs to take to download the extensions: 1 (just
need to download it from the Chrome store)

User detectability: Moderate (the user won’t be directly notified of the
change in email contents, but the email can be traced back to the user from
the receiver)

How often it can be done: Frequently (doesn’t take much CPU processing
power to add some lines to an email)

e How many permissions it requires: 2 (activeTab, webRequest)
e How easily it’ll get published into the Chrome store: Medium (the spam

attack can probably be hidden in the code of a legitimate extension, but is
not guaranteed to be unnoticeable)

6. RESULTS AND RECOMMENDATIONS

We summarize the analyses across attacks in the table below.

10 FENG, GONG, HE

H Attack Steps Detectability Frequency Permissions Publishability H
Cookie Stuffing 1 Difficult Frequent 2 Easy
Phishing 1 Moderate/Difficult Frequent 2-5 Easy/Medium
DDoS 1 Moderate/Difficult Frequent 2 Medium
Cryptomining 2-3 Moderate Infrequent 2+ Medium/Hard
Email Spamming 1 Moderate Frequent 2 Medium

We find that the large majority of attacks only require the user to install an
extension, after which it is fairly difficult to detect the exploit. They often only
require a few key permissions, and the majority of required code often looks typical
to what a normal extension of that purpose would have, making it no guarantee that
a quick skim of the code will cause it to be flagged as malicious. Our conclusion is
that for many attacks it is very feasible to get a malicious Chrome extension into the
Web Store, either through an existing legitimate extension or published directly by
the bad actor, and it is moderately difficult for users to notice malicious actions once
the extension has been installed.

We recommend that users be very careful about which extensions they install,
especially if it claims to need the activeTab/tabs and webRequest permissions.
Legitimate extensions can be turned into malware vectors, so even if a user only
installs extensions from well-regarded services or developers, that doesn’t necessarily
mean they are safe.

7. FUTURE WORK

Computer security is always an ongoing battle. There are always more creative
exploits and more creative ways to combat these exploits. Our paper reviewed some
of the most popular botnet exploits, but there are certainly others that we have
not touched upon. Chrome extensions can also be malicious without the constraint
that they are botnets. While we have shown the level of ease at which Chrome
can be exploited, there are still more things that developers should be cognizant
of while developing products to stave off exploitation. We would also be interested
in investigating other Chromium-based browsers such as Opera or Brave, as they
support Chrome extension installation but have their own policies with regards to
browser security.

ANALYZING GOOGLE CHROME EXTENSION BOTNET EXPLOITS 11

REFERENCES
[Abr] Lawrence Abrams. Chrome saying it’s managed by your organization
may indicate malware. https://www.bleepingcomputer.com/news/software/
chrome-saying-its-managed-by-your-organization-may-indicate-malware/. Last

Accessed: 2020-5-11.

[bro] Browser market share worldwide. https://gs.statcounter.com/browser-market-share#
monthly-201910-201910-bar. Last Accessed: 2020-5-11.

[BS] Lenart Bermejo and Hsiao-Yu Shih. Digmine cryptocurrency miner spreading via face-
book messenger. |https://blog.trendmicro.com/trendlabs-security-intelligence/
digmine-cryptocurrency-miner-spreading-via-facebook-messenger/. Last Accessed:

2020-5-11.
[Che] Joseph C. Chen. Facexworm targets cryptocurrency trad-
ing platforms, abuses facebook messenger for propagation.

https://blog.trendmicro.com/trendlabs-security-intelligence/
facexworm-targets-cryptocurrency-trading-platforms-abuses-facebook-messenger-for-propagation/|
Last Accessed: 2020-5-11.

[chr] Chrome developer guide. https://developer.chrome.com/extensions/devguide, Last Ac-
cessed: 2020-5-11.

[Cima] Catalan Cimpanu. Google removes two chrome ad blocker ex-
tensions caught ’cookie stuffing’. https://www.zdnet.com/article/
google-removes-two-chrome-ad-blocker-extensions-caught-cookie-stuffing/. Last
Accessed: 2020-5-11.

[Cimb] Catalin Cimpanu. Chrome extension caught hijacking
users’ search engine results. https://www.zdnet.com/article/
chrome-extension-caught-hijacking-users-search-engine-results/. Last Accessed:
2020-5-11.

[ext] chrome.permissions. https://developer.chrome.com/extensions/declare_permissions|
Last Accessed: 2020-5-11.

[Gat] Sergiu Gatlan. Hackers steal payment card data using rogue
iframe phishing. https://www.bleepingcomputer.com/news/security/
hackers-steal-payment-card-data-using-rogue-iframe-phishing/. Last Accessed:
2020-5-11.

[LZC] L. Liu, X. Zhang, and S. Chen. Botnet with browser extensions. 2011 IEEE Third Interna-
tional Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International
Conference on Social Computing, pages 1089-1094.

[Ped] Chris Pederick. Web developer for chrome compromised. https://chrispederick.com/blog/

2017/08/03/web-developer-for-chrome-compromised/. Last Accessed: 2020-5-11.

Raffaello Perrotta and Feng Hao. Botnet in the browser: Understanding threats caused by

malicious browser extensions. IEEE Security Privacy, 16:66-81, 2018.

[RS] Adi Raff and Yuval Shapira. Nigelthorn malware abuses chrome extensions
to cryptomine and steal data. https://blog.radware.com/security/2018/05/
nigelthorn-malware-abuses-chrome-extensions/. Last Accessed: 2020-5-11.

[PH18

https://www.bleepingcomputer.com/news/software/chrome-saying-its-managed-by-your-organization-may-indicate-malware/
https://www.bleepingcomputer.com/news/software/chrome-saying-its-managed-by-your-organization-may-indicate-malware/
https://gs.statcounter.com/browser-market-share#monthly-201910-201910-bar
https://gs.statcounter.com/browser-market-share#monthly-201910-201910-bar
https://blog.trendmicro.com/trendlabs-security-intelligence/digmine-cryptocurrency-miner-spreading-via-facebook-messenger/
https://blog.trendmicro.com/trendlabs-security-intelligence/digmine-cryptocurrency-miner-spreading-via-facebook-messenger/
https://blog.trendmicro.com/trendlabs-security-intelligence/facexworm-targets-cryptocurrency-trading-platforms-abuses-facebook-messenger-for-propagation/
https://blog.trendmicro.com/trendlabs-security-intelligence/facexworm-targets-cryptocurrency-trading-platforms-abuses-facebook-messenger-for-propagation/
https://developer.chrome.com/extensions/devguide
https://www.zdnet.com/article/google-removes-two-chrome-ad-blocker-extensions-caught-cookie-stuffing/
https://www.zdnet.com/article/google-removes-two-chrome-ad-blocker-extensions-caught-cookie-stuffing/
https://www.zdnet.com/article/chrome-extension-caught-hijacking-users-search-engine-results/
https://www.zdnet.com/article/chrome-extension-caught-hijacking-users-search-engine-results/
https://developer.chrome.com/extensions/declare_permissions
https://www.bleepingcomputer.com/news/security/hackers-steal-payment-card-data-using-rogue-iframe-phishing/
https://www.bleepingcomputer.com/news/security/hackers-steal-payment-card-data-using-rogue-iframe-phishing/
https://chrispederick.com/blog/2017/08/03/web-developer-for-chrome-compromised/
https://chrispederick.com/blog/2017/08/03/web-developer-for-chrome-compromised/
https://blog.radware.com/security/2018/05/nigelthorn-malware-abuses-chrome-extensions/
https://blog.radware.com/security/2018/05/nigelthorn-malware-abuses-chrome-extensions/

	1. Introduction
	2. Chrome Extension Architecture
	2.1. Permissions

	3. Evaluation Methodology
	4. User Discovery
	4.1. Initial Installation
	4.2. User Retention

	5. Botnet Execution Exploits
	5.1. Cookie Stuffing
	5.2. Phishing
	5.3. DDoS
	5.4. Cryptocurrency Mining
	5.5. Email Spamming

	6. Results and Recommendations
	7. Future Work
	References

