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Recitation 7: Zero Knowledge

1 Definitions

Interactive Protocol: Given a Prover P , a Verifier V , a language L and an input x, P and V hold a con-
versation so that P proves that x ∈ L. This is called proof-of-knowledge, since P proves that a statement
is correct or that she knows the solution to a problem. Zero-knowledge is a condition that guarantees
that the Verifier V gets no other information besides whether or not a statement is correct (x ∈ L). Some
examples including P proving that he knows a 3-coloring of a graph, a Hamiltonian cycle of a graph, or the
discrete log of a given number, without revealing the specific 3-coloring, Hamiltonian cycle or discrete log,
respectively.

Completeness: An honest Verifier ”accepts” the proof when the statement is actually correct (e.g. P
knows the discrete log).

Soundness: Verifier ”rejects” the proof when the statement is incorrect, with high probability (e.g. a
cheating P cannot convince V that she knows the discrete log, except with little probability).

Common Assumptions: We usually assume that P has unlimited computation power, while V is
bounded by probabilistic polynomial time.

2 Examples

Below there are three examples of zero-knowledge interactive protocols. We assume that we have an honest
Verifier.

2.1 Graph 3-Colorability (Review)

Given a graph G = (V,E), the Prover wants to prove that she knows a way to color the vertices using 3
colors such that no two adjacent vertices have the same color. The Prover does not want the Verifier to find
any information about the valid coloring, only one exists and P knows it.

The protocol works as follows:

1. P permutes the colors of the valid 3-coloring. Let c1, c2, . . . , cn be the final values

2. P sends over to V the commitments com(c1), com(c2), . . . , com(cn)

3. V asks for an edge (i, j) ∈ E

4. P reveals ci, cj

5. V accepts if, and only if, ci and cj are different colors

Completeness: Completeness follows from the fact that a Prover who knows the coloring can answer
all requests of an honest Verifier.

Soundness: Consider a cheating Prover that wants to convince Verifier. Since the Prover does not know
a 3-coloring, at least one of the edges is monochromatic. Then, Verifier chooses a monochromatic edge with
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probability at least |E|−1. By repeating N times, the probability of Prover convincing the Verifier becomes
at most (1− |E|−1)N , which can be arbitrarily small.

Zero Knowledge: Verifier learns only if the edge he chose is monochromatic or not, but does not get
any other information about the original graph.

2.2 Hamiltonian Cycle

Given a graph G = (V,E), a Hamiltonian cycle is a cycle that visits every vertex exactly once. Finding
whether a Hamiltonian cycle exists is considered an NP-complete problem. Prover wants to prove that he
knows a Hamiltonian cycle of graph G, without revealing the actual path. How to achieve this?

Consider the following protocol:

1. P permutes the vertices of G. Let H be the resulting graph

2. P sends over to V the commitments com(π) and com(H), where π is the permutation of the vertices

3. V replies with b ∈ {0, 1}

4. If b = 0, then P reveals H and π and V accepts if π is a valid permutation and H is the valid graph
implied by the permutation π

5. If b = 1, then P reveals only a Hamiltonian cycle of H and V accepts if the revealed path is Hamilto-
nian.

Completeness: Completeness follows from the fact that a Prover who knows the Hamiltonian cycle can
answer all requests of an honest Verifier. Notice that given the Hamiltonian cycle and the permutation π, it
is easy to find a Hamiltonian cycle in H.

Soundness: Consider a cheating Prover that wants to convince Verifier. Prover cannot construct H and
its Hamiltonian cycle at the same time, so he needs to guess whether b = 0 or b = 1. If he guesses b = 0,
then he simply permutes G and sends the resulting graph. If he guesses b = 1, then he constructs a different
H with a Hamiltonian cycle, so he reveals the cycle, but V does not know that H and G are not isomorphic.
Prover can guess correctly with probability 1

2 . By repeating N times, the probability of Prover convincing
the Verifier drops to 2−N , which can be arbitrarily small.

Zero Knowledge: If b = 0, Verifier only sees a permutation of G. If b = 1, Verifier only sees a
Hamiltonian cycle, but does not know how the cycle is related to G. Thus, he cannot find how to construct
the cycle.

2.3 Discrete Log

Given a prime p, a generator g of Z∗p and a number y ∈ {1, 2, . . . , p−1} Prover wants to prove that he knows
the discrete log x of y, that is gx = y mod p, without revealing x.

Consider the following protocol:

1. P chooses a random number r ∈ {1, 2, . . . , p− 1}, computes c = gr mod p and sends c over to V

2. V replies with a random u ∈ {1, 2, . . . , p− 1}

3. P computes s = r + ux mod p− 1 and sends it to V

4. V accepts if gs = c · yu mod p
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Completeness: Completeness follows from the fact that a Prover who knows the discrete log of y can
answer all requests of an honest Verifier.

Soundness: Consider a cheating Prover that wants to convince Verifier. If P chooses r randomly, then in
the last step she needs to find the discrete log of c ·yu, which we assume is a hard problem. If P chooses s, so
that gs = c·yu, then this means that she needs to have guessed u and then choose c accordingly. Thus, Prover
cannot find r and s at the same time, without knowing x, except with little probability (guessing u correctly).

Zero Knowledge: Verifier sees s = r + ux mod p − 1 and knows u, so he needs r in order to find x.
However, that would mean that he could solve the discrete log for c, which is assumed a hard problem.

3 Simulating the Interactive Protocol

The formal argument for Zero Knowledge requires the use of a Simulator. Simulators are programs that take
an input x and create a “dialog” between two parties P and V . Let S(x) be the dialog created by a Simulator
S and (P, V )(x) be an interactive protocol. Then, (P, V ) is zero-knowledge if there exists a simulator S such
that S(x) ≈ (P, V )(x), that is, the distributions of the two outputs are the same. Intuitively, the Simulator
has no knowledge of x, so producing the dialogs with the same probability distributions means that the
Verifier learns only as much as the Simulator knows, which is nothing.

In class, we saw how to create a simulator for 3-coloring in the case of an honest Verifier. The proposed
Simulator works as follows:

1. S chooses randomly a valid edge e = (i, j) ∈ E

2. S chooses the two distinct colors ci and cj . All other vertices are colored with the same color

3. S “sends” the commitments of c1, . . . , cn to V . S cannot actually send anything, since V does not
exist. He only simulates doing so.

4. S “receives” e = (i, j) from V

5. S reveals ci and cj

The output of the above program is valid and has the same distribution as the interactive protocol between
P and V . However, we make the assumption that V is an honest Verifier, e.g. he picks the pre-selected edge.
A stronger version of zero-knowledge requires the Simulator to run with any Verifier, including a malicious
one.

In this case, we modify the Simulator as follows:

1. S chooses randomly a valid edge e = (i, j) ∈ E

2. S chooses the two distinct colors ci and cj . All other vertices are colored with the same color

3. S “sends” the commitments of c1, . . . , cn to V ∗

4. S “receives” an edge e′ from V ∗

5. If e′ = e, S reveals ci and cj

6. If e′ 6= e, S does not reveal anything and repeats until some colors are revealed

On expectation, after |E| repetitions S has produced a valid transcript.
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4 Applications of Zero Knowledge

Some applications include:

1. ID schemes

2. Electronic Voting

3. Cryptocurrencies

4. Nuclear Disarmament


