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Recitation 4: Finite Fields and Security Definitions

1 Groups and Finite Fields

1.1 Groups

A group is defined by a tuple (S, ·) where S is a set of numbers and · is an operation with the following
properties, ∀a, b, c ∈ S:

Associative - (a · b) · c = a · (b · c)

Commutative - a · b = b · a

Identity - a · 1 = a (for some identity element 1 ∈ S)

Invertibility - a · (a−1) = 1

The “order” (ord) of a finite group refers to the number of elements in the set. Some commonly used
examples include Z∗p = Zp \ 0 , Z∗n = {a ∈ {1, 2, . . . , n− 1} | gcd(a, n) = 1, n = p · q}.

A cyclic group is a group G for which an element g exists such that {g1, . . . , gord(G)} = G. g is referred
to as a generator of G.

1.2 Fields

A field is defined by a tuple (S,+, ·) where S is a set of numbers and + and · are operations satisfying the
following:

1. S contains 0 (additive identity) and 1 (multiplicative identity).

2. (S,+) is an abelian (commutative) group with identity 0.

3. (S \ {0}, ·) is an abelian (commutative) group with identity 1.

Some examples of fields include the following:

1. (Q,+, ·) (set of rationals)

For a rational p
q , additive inverse is −p

q and multiplicative inverse is q
p .

2. (R,+, ·) (set of reals) and (C,+, ·) (set of reals)

For a real or complex x, additive inverse is −x and multiplicative inverse is 1
x .

3. (Zp,+, ·) (set of non-negative integers < p)

For x ∈ Zp, additive inverse is p − x and multiplicative inverse is p−1 (use Extended Euclidean
Algorithm, see R1).
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1.3 Finite Fields and Construction

Finite fields, also referred to as Galois fields (GF ), are fields that have a finite number of elements. Any finite
field has order pn, where order is the number of elements in the set, p is prime and n is some natural number.

For n = 1, Zp is such a finite field. For n > 1, we let π(x) be some n-degree irreducible polynomial where
the coefficients are all in Zp. Consider the following set of polynomials Fp[x]:

c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1, ci ∈ Zp

Then (Fp[x]/π(x),+, ·) is a finite field with order pn.

+ is defined as with normal polynomial addition except the coefficients are all computed in mod n. · is
similar to normal polynomial multiplication, except when the degree exceeds n, the value is treated as the
remainder when doing polynomial long division with π(x).

A notable use of finite fields is in Shamir’s secret sharing (Zp) and in AES (GF (28)).

2 Security Definitions

2.1 CPA Security

In the context of a symmetric (same key to encrypt and decrypt) encryption scheme, a Chosen Plaintext
Attack (CPA) refers to an attack where the adversary can choose a number of plaintexts and see their
corresponding ciphertexts and use this information to break the encryption scheme, e.g. discover some in-
formation about the plaintext of some new ciphertext, discover the key.

Indistinguishable under Chosen Plaintext Attack (IND-CPA) security means that any adversary A cannot
efficiently win in the following game.

1. The challenger generates a key k and gives A access to encryption oracle Enck.

2. As many times as needed, A can generate a message m and see the ciphertext Enck(m).

3. A chooses two messages m0 and m1 and sends them to the challenger.

4. The challenger returns ciphertext c which is either Enck(mb) for b ∈ {0, 1}.

5. (Adaptive case) A can continue to query the encryption oracle.

6. A wins if they can guess b correctly.

By necessity, for any encryption scheme to be CPA secure, it must be randomized. Otherwise A can just
choose m0 and m1 from the plaintexts for which they know the ciphertext.

(For any public key cryptosystem to be usable, it must also be CPA secure since everyone has the public
key and thus access to the “encryption oracle”.)
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2.2 MAC Authentication

Message Authentication Codes provide integrity to a message, i.e. makes it detectable when a message has
been altered. CPA, in the context of MACs, is when an adversary can choose a number of plaintexts and
see their corresponding MACs, and use this to break the MAC scheme, e.g. be able to forge a MAC for
some/all possible messages.

Defined by three algorithms: Gen,MAC(k,m), V er(k,m,M).

A MAC scheme is secure against adaptive chosen message/ plaintext attack if any adversary A cannot
efficiently win in the following game.

1. The challenger generates a key k and gives A access to MAC oracle MACk.

2. As many times as needed, A can generate a message m and see the MAC M = MACk(m).

3. A wins if they can generate a new message m′ and MAC M ′ such that V erk(m′,M ′) = 1.

2.3 CCA Security

For symmetric encryption schemes, a Chosen Ciphertext Attack (CCA) is when the adversary has access
to both an encryption and decryption oracle and can use this to break the encryption scheme. The game
corresponding to this type of security is as follows:

1. The challenger generates a key k and gives A access to encryption oracle Enck.

2. As many times as needed, A can generate a message m and see the ciphertext Enck(m).

3. Similarly, A can generate a ciphertext c and see the decrypted plaintext m = Deck(c) if valid.

4. A chooses two messages m0 and m1 and sends them to the challenger.

5. The challenger returns ciphertext c which is either Enck(mb) for b ∈ {0, 1}.

6. A can continue to query the encryption and decryption oracles (but cannot query for decryption of c).

7. A wins if they can guess b correctly.

2.4 Making a CCA Secure Encryption Scheme

Any CPA secure encryption scheme (Gen,Enc,Dec) can be converted into a CCA secure encryption scheme
by using the MAC (GenMAC ,MAC, V erify) . To be specific, key generation, encryption and decryption
algorithms are as follows:

• Gen′ = (Gen,GenMAC) (generates separate keys for the encryption scheme and MAC scheme)

• Enc′((k1, k2),m) = Enc(k1,m),MAC(k2, Enc(k1,m)) (ciphertext and MAC of ciphertext)

• Dec′((k1, k2), (c1, c2)) = Dec(k1, c1) if V er(k2, c1, c2)

Since the original encryption scheme is CPA secure and the MAC scheme is independently generated
from the encryption scheme, the entire scheme is still CPA secure.

For CCA security, the only difference is the adversary’s access to the decryption algorithm. However, be-
cause the MAC is unforgeable, the adversary cannot generate a valid ciphertext so the decryption algorithm
provides no additional information.

As such, this scheme is CCA secure.


