Today

Public-key Cryptography

- Basic group theory
- Diffie-Hellman key exchange
- Definition of public key cryptography
- El-Gamal encryption scheme

Group Theory - Recap

Definition: A group G consists of a set of elements & an operation $\cdot : G \times G \rightarrow G$ s.t.
- $\forall a,b,c \in G \quad a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associative)
- \exists identity $1 \in G$ s.t. $1 \cdot a = a \cdot 1 = a \quad \forall a \in G$
- $\forall a \in G \quad \exists a^{-1} \in G$ s.t. $a \cdot (a^{-1}) = 1$ (inverse)

A group is commutative if $\forall a,b \in G \quad a \cdot b = b \cdot a$

* All groups we will work with are Commutative.

Common Groups: \mathbb{Z}_p, \mathbb{Z}_n, \mathbb{Q}_p, \mathbb{Q}_n, Elliptic curves.
$$\mathbb{Z}_p^* = \{1, 2, \ldots, p-1\} \text{ mult. mod } p$$

$$\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n \mid n-1 \} \text{ s.t. } \gcd(a, n) = 1$$

$n = p \cdot q$ product of 2 primes (used in RSA)

Def: The order of a group is the number of elements in the group

$$|\mathbb{Z}_p^*| = p-1$$

$$|\mathbb{Z}_n^*| = n-1 - (p-1) - (q-1) = n - p - q + 1 = (p-1)(q-1) \equiv \varphi(n)$$

Note: The order of \mathbb{Z}_n^* is hard to compute given only n. φ is used in security of RSA.

\star For crypto applications we often need a group of prime order.

Note: \mathbb{Z}_p^* is not prime order.

$$Q_p = \{a^2 : a \in \mathbb{Z}_p^*\}.$$
Claim: $|Q_p| = \frac{p-1}{2}$

Consider $f : \mathbb{Z}_p^* \rightarrow Q_p$ defined by $f(a) = a^2 \mod p$.

By Fundamental Theorem of Algebra every degree d poly over a field K has at most d roots.

$\Rightarrow a^2$ has only two pre-images a, $p-a$.

(since $g(x) = x^3 - x$ is a deg 2 poly over the field $GF[p]$.)

(This is not true over \mathbb{Z}_n^*, since it is not a field.)

$\Rightarrow |Q_p| = \frac{p-1}{2}$

If p is a prime $\Rightarrow g^\frac{p-1}{2}$ is prime then $|Q_p|$ is prime.

Such p is called safe prime.

Recall: Exponentiation can be done efficiently (repeated squaring).

Inverses can be computed efficiently.
By Fermat's Little Thm: \(a^{p-1} = 1 \mod p \)
\[\Rightarrow a^{-1} = a^{p-2} \mod p \]

- A prime (or safe prime) can be chosen efficiently
 by choosing a random element in \(\mathbb{Z}_p \)
 and testing if it is prime (or safe prime).

Order of Elements & Generators

\(\forall \) finite group \(G \), consider the subgroup
\[\langle a \rangle = \{ a, a^2, \ldots, a^u \} \]
subgroup generated by \(a \).

Lagrange Thm: A finite group \(G \)
\[\forall a \in G \quad a^{|G|} = 1 \]

Def: order \((a) = |\langle a \rangle| \) = least \(u \geq 1 \) s.t. \(a^u = 1 \).

Corollary: \(\forall a \in G \quad \text{order}(a) \mid |G| \)

(If \(\text{order}(a) = u \) & \(|G| = au + \beta \quad \beta \in \mathbb{Z}_1 \sim u-1 \))

then \(1 = a^{|G|} = a^{au + \beta} = a^\beta \) - contradiction.)
Def: If \(\langle a \rangle = G \) then \(a \) is a generator of \(G \).

Def: A finite group is cyclic if it has a generator as \(G \).

Thm: \(\mathbb{Z}_n^* \) is cyclic iff \(n \) is 2, 4, \(p^m \) or \(2p^m \).

When we use \(\mathbb{Z}_p^* \) we often use it together with a generator \(g \) so that

\[f_g: x \mapsto g^x \]

is a bijection from \(\mathbb{Z}_{p-1} \) to \(\mathbb{Z}_p^* \).

\[g^x \mapsto x \]

discrete log, believed to be hard.

In \(\mathbb{Z}_p^* \), the fastest alg for computing discrete log takes time \(\geq 2^{\log p + \varepsilon} \), sub-exp alg.

How do we efficiently find a generator?

Note: A random element in \(\mathbb{Z}_p^* \) is not a generator w.p. at least \(\frac{1}{2} \). (if it is in \(\mathbb{Q}_p \) it is not a generator.)
- It is easy to find generator in a prime order group! Every element except the identity is a generator.

- In \(\mathbb{Z}_p^* \) we need to know the factorization of \(p-1 \) to find a generator.

Diffie-Hellman Key Exchange

(precursor to public-key crypto)

Allows Alice & Bob to share a secret key in the presence of a passive eavesdropper.

Let \(G \) a cyclic group w. generator \(g \)

(i.e. \(G = \{ g, g^2, \ldots, g^{1613} \} \))

\(G, g \) fixed & public

\[A \xrightarrow{\text{Choose random}} g^x \xrightarrow{\text{A}} B \]

\[\text{Choose random} \ y \in \mathbb{Z}_{1613} \]

\[g^y \xleftarrow{\text{B}} \]

\[\text{Shared Secret} : \ K = g^{x+y} \]
Computation Diffie-Hellman Assumption (CDH)

Given g^x, g^y, it is hard to compute g^{x+y}
(i.e., there is only negl probability of succeeding).

CDH => Eve doesn't learn k except w. negl prob.

This guarantee is not strong enough to then use
k as a secret key, since Eve may learn \(\frac{1}{2} \)
the bits of k.

Decisional Diffie-Hellman Assumption (DDH)

Giving g^x, g^y, it is hard to distinguish g^{xy}
from g^u, where u is random in $\mathbb{Z}_{1+\text{length}}$.

Thm: DDH => DH key exchange is secure, i.e.,
Eve cannot dist. between k and a fresh random
key.

(Follows immediate from DDH assumption)
DDH does not hold in \mathbb{Z}_p^* (H.W.)

We believe DDH holds in a prime order subgroup of \mathbb{Z}_p^*. (e.g. \mathbb{F}_p for $p=2g+1$ safe prime.)

Public-Key Encryption

Consists of 3 PPT algorithms: KeyGen, Enc, Dec.

KeyGen: Takes as input security parameter 1^λ (in unary, so that KeyGen will run in poly time).

$\lambda \approx$ key-size. It outputs (PK, SK).

Enc: Takes as input (PK, m), outputs a ciphertext C msg in msg space M.

Dec: Takes as input (SK, C) and outputs m ciphertext.

Correctness: $\forall (PK, SK) \leftarrow \text{KeyGen}(1^\lambda), \forall m \in M$

$$\Pr\left[\text{Dec}(SK, \text{Enc}(PK, m)) = m \right] = 1$$

Semantic Security (CPA-security): $\forall m_0, m_1 \in M, \text{Im}(m_0) \neq \text{Im}(m_1)$

$$(PK, \text{Enc}(PK, m_0)) \not\approx (PK, \text{Enc}(PK, m_1))$$
- More generally, m_0, m_1 can be adv chosen after seeing pk.

Note: We do not give the adv oracle access to $Enc(pk, \cdot)$ since it can be computed from pk.

El-Gamal Enc. Scheme

Let G be a cyclic group w. generator g st.
we believe DDH holds: $(g^x, g^y, g^{xy}) \approx (g^x, g^y, g^u)$

Key Gen: Choose $x \leftarrow [1, \ldots, lG13]$
Let $sk = x$, $pk = g^x$

(Formally, choosing G & g should also be)
part of Key Gen: Choose safe prime p
$G = Q_p$, g = any generator (any $g \in Q_p \setminus \{1\}$).

$Enc(pk,m)$: Choose random $y \leftarrow [1, \ldots, lG13]$
G
Output $(gy, g^{xy \cdot m})$
DH key.
\[\text{Dec}(x, (g^y, g^{xy}\cdot m)) \]
\[\frac{\text{output}}{(a, b)} \]
\[\frac{b}{a^x} \]

Semantic Security follows immediately from DDH:

\[(g^x, g^y, g^{xy}\cdot m_0) \approx (g^x, g^y, g^{y'_x}) \approx (g^x, g^y, g^{xy}\cdot m_1) \]