Today:

Continue symmetric encryption & authentication

- Cipher Block Chaining (CBC) mode
- CCA security
- Message Authentication Codes (MACs)

Begin

- Finite fields
- Shamir Secret Sharing

Cipher Block Chaining (CBC) Mode

Let \((E_k, D_k)\) be a block cipher

\[
\begin{align*}
\text{CBC:} & & \downarrow \quad & \downarrow & \downarrow & \downarrow & \downarrow \\
IV \quad & \rightarrow & m_0 & m_1 & m_2 & \cdots \\
\downarrow \quad & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\text{random} & \quad & \downarrow & \downarrow & \downarrow & \downarrow \\
\text{initial value} & \quad & \downarrow & \downarrow & \downarrow & \downarrow \\
& \quad & E_k & E_k & E_k & \cdots \\
& \quad & C_0 & C_1 & C_2 & \cdots \\
\end{align*}
\]

Output IV, \((c_0, c_1, c_2, \ldots)\)

* If msg is not of length which is a multiple of
block length then pad (e.g., add 10...0 to each msg).

Decrypt: Using $D_k = E_k^{-1}$ in the obvious way.

Claim: If (E_k, D_k) is an ideal block cipher (i.e., random permutation), then CBC mode is a CPA secure encryption scheme (assuming IV is random).

Key generation alg

Def: An encryption scheme (Gen, Enc, Dec) is CPA secure if for all m_0, m_1, s.t. $\|m_0\| = \|m_1\|$, and efficient A

$$A^{Enc_k(Enc_k(m_0))} \neq A^{Enc_k(Enc_k(m_1))}$$

A is given black-box access to Enc_k.

Actually, A can choose m_0, m_1 after querying Enc_k

Intuitively: CBC enc. of any msg $(m_0, m_1, ...)$ is a random CT $(c_0, c_1, ...)$ ind. of $(m_0, m_1, ...)$ if (E_k, D_k) is an ideal cipher.

Randomness of IV is needed to argue that it remains random even given oracle access to Enc_k.

\[\text{L7.2}\]
A stronger notion of security: **CCA security**

Chosen Ciphertext Attack

Def: An encryption scheme \((Gen, Enc, Dec)\) is \(\text{CCA secure}\) if \(\forall M_0, M_1\) s.t. \(|M_0| = |M_1|\)

\(\forall\) efficient \(A\)

\[A^{Enc_k, Dec_k} (Enc_k(m_0)) \approx A^{Enc_k, Dec_k} (Enc_k(m_1)) \]

\(A\) is given black-box access to both \(Enc_k\) & \(Dec_k\) for \(k \leftarrow Gen\).

Moreover \(A\) can choose \(M_0\) & \(M_1\) after querying \(Enc_k\) & \(Dec_k\), but cannot send its exact input \(Enc_k(M_0)\) as oracle query to \(Dec_k\).

Claim: CBC is **not** CCA secure.

(and neither are ECB or CTR)

Pf: \(A\) picks \(M_0 = 0^N\) & \(m_1 = 1^N\)

Given \(C \leftarrow Enc_k(M_0)\) let \(C' = 1^{\text{st half of the bits of } C}\) (w. same IV).
A queries Dec_k with c' (this is allowed since) $c' \neq c$

which gives 1^{st} half of the bits of m_b, revealing b.

How do we design CCA secure schemes?

1. Construct a CPA secure scheme (e.g. CBC).
2. Add authentication (so that Dec_k will only decrypt msgs that are "authenticated")

Message Authentication Code (MAC)

Provides integrity (authenticity), not confidentiality.

Alice \[m, \text{MAC}_k(m) \rightarrow \text{Bob} \]

Bob recomputes \[\text{MAC}_k(m) \] and checks that it agrees with what they received. If not, reject.

- Allows Bob to verify that m originated from Alice, and arrived unmodified.
- Alice & Bob need to share a secret key.
- orthogonal to confidentiality. Typically we do both
 (encrypt & append MAC on the ciphertext) for
 integrity.

Security of MAC

Def: A MAC is **secure against adaptive chosen msg attacks** if & only if a given pairs
\((m_i, \text{MAC}_k(m_i))\) for any msgs \(m_i\) of their
choice, cannot generate any new \(m'_i\) with
valid \(\text{MAC}_k(m'_i)\).

(Jumping ahead: MACs are like digital signatures but in
the symmetric key setting)

Note: If MAC generates tags of length \(t\), then
\(\text{Adv}\) can guess w.p. \(2^{-t}\). Therefore \(t\) needs
to be sufficiently large.

Thm: CPA secure encryption scheme + secure MAC \(\Rightarrow\) CCA secure encryption scheme
Intuitively, adding a MAC to the ciphertexts makes the decryption oracle useless.

How to construct a MAC

1. From hash functions (HMAC)
2. From block ciphers (CBC-MAC or CMAC).

CBC-MAC

CBC-MAC_k(m): Encrypt m w. CBC mode with IV = 0 & output only last cipher but the key _k used for the last block is different from the key _k used for all other blocks!

(Both _k1 & _k2 are random & ind.)

HW

Why does _k2 need to be different than _k1?

Why isn’t IV random?
Finite Fields & Shamir Secret Sharing

Def: A field is defined by a tuple \((S, +, \cdot)\) s.t.

* \(S\) is a set containing "0" & "1".

* \((S, +)\) is an abelian (commutative) group with identity 0:
 \[
 \begin{cases}
 (a+b) + c = a + (b+c) & \forall a, b, c \in S \quad \text{(associative)} \\
 a+0 = 0+a = a & \forall a \in S \quad \text{(identity 0)} \\
 \forall a \in S \exists b \in S \text{ st. } a+b = 0 & \text{(inverse)} \\
 a+b = b+a & \forall a, b \in S \quad \text{(commutative)}
 \end{cases}
 \]

* \((S^\circ, \cdot)\) is an abelian (commutative) group with identity 1:
 \[
 S^\circ = S \setminus \{0\}
 \]
 \[
 \begin{cases}
 (a \cdot b) \cdot c = a \cdot (b \cdot c) & \forall a, b, c \in S \quad \text{(associative)} \\
 a \cdot 1 = 1 \cdot a = a & \forall a \in S \quad \text{(identity 1)} \\
 \forall a \in S^\circ \exists b \in S^\circ \text{ st. } a \cdot b = 1 & \text{(inverse)} \\
 a \cdot b = b \cdot a & \text{(commutative)}
 \end{cases}
 \]
Examples

\mathbb{R} (reals) \{ familiar fields.

\mathbb{C} (complex)

These are finite fields (i.e., fields w. infinitely many elements).

In crypto, we usually work w. finite fields, where $|\mathbb{F}|$ is finite.

Example: $(\mathbb{Z}_p, +, \cdot)$ where $+, \cdot$ are mod p.

\[\mathbb{Z}_p = \{ 0, 1, \ldots, p-1 \} \]

Thm: There is a finite field \mathbb{F} w. q elements if and only if

$q = p^k$ for some prime p and integer $k \geq 1$.

Moreover, for every such q, there is a unique field consisting of q elements, denoted by $\mathbb{GF}(q)$.

$\mathbb{GF}(p)$ for prime p is $(\mathbb{Z}_p, +, \cdot)$, where $+ \& \cdot$ are mod p.

Galois Field