
Blockchain Voting: Implementation and Analysis.

Kimberly Villalobos, Christian Altamirano and Rishabh Chandra

Abstract— In this paper we provide a security analysis
of the blockchain-based voting system proposed by
HjÃąlmarsson and Hreiðarsson [1]. For this, we take
the role of administrators of an election and implement
a decentralized voting application. We then explain
the implementation details and expose some of the
possible attacks that make the system not optimal for
running national elections. Lastly, we compare the security
risks of this system to those of other online voting systems.

I. INTRODUCTION

Electronic voting systems require a certain amount
of certainty that is not even expected in other high-
sensitive cybersecurity applications. This is mainly
due to the architectural and philosophical challenges
around the concept of voting. In most secure systems,
there are very few users who actually operate it with
credentials, in a centralized location (think major
server for a corporation, crime record database for
the FBI, etc). Voting systems necessarily need a high
level of distribution, such that there are millions of
voting machines operated by poll workers without
the technical background to accurately assess the
security vulnerabilities in the system. In addition, with
voting comes the ability to influence policy and social
outcomes for millions, if not billions of people. The
stakes in a major election in a country like Brazil,
India, or the United States are extremely high, and the
economic benefit to a successful hack might literally be
on the order of trillions of dollars (for example, if one
candidate is more favorable to your corporation than
another and is looking to give corporate tax incentive).
This combination of high stakes and distributed control
makes voting systems particularly difficult to secure
electronically. The following are considered essential
requirements that any voting system must satisfy:

1) Only eligible voters should be able to vote, and
they can vote at most once. There needs to be, in
other words, some form of authentication available
for the system.

2) Each vote must be secret - i.e. it is impossible to
determine how a voter voted in order to prevent
bribing, extortion, or blackmail on the part of
hostile actors.

3) The system must work under the assumption that
adversaries with a lot of power exist and can try
to attack the system.

4) The results of an election must be verifiable by
auditing ballots or using some other statistical
techniques that do not depend on the correctness
of a software.

5) The system must have no part of the operation
that is considered "trusted" - i.e. no actor or piece
of software can be in possession of a secret key,
or special administrative power that cannot be
checked.

Paper-based voting systems have been the most common
method used world-wide for running national elections.
Voters usually need to go to a voting center, present a
government ID to be authenticated and then proceed to
cast their vote on a a paper ballot that is completely
anonymous. The main advantage of this system is that
it truly provides secret ballots: once a voter submits
their vote it is basically impossible to differentiate his
or her vote from the rest.

However, paper ballots do not necessarily satisfy all
requirements listed above. In particular, a corrupt
party with access to the ballots could insert multiple
paper-ballots with fake votes and while it is possible to
find out that extra votes were included, the system does
not allow to verify which ballots are the invalid ones.
Or in the opposite side, an adversary could destroy
paper ballots before they are counted and the votes
could not be retrieved.



Many people have tried to develop new voting systems
that solve the disadvantages that paper ballots have;
however, the main motivation for designing new systems
seems to be solving the inefficiencies of the system
like the manual work required or the amount of time
needed to know the results, as opposed to solving its
security concerns. Consequently, the incorporation of
new technologies to automate and speed up the system
is considered by many the perfect solution.

A. Internet Voting

Internet Voting refers to election systems in which
ballots are electronic and votes are cast on a machine
(computers, cellphones, etc). These ballots are sent to
and from the voting device via web or email. Multiple
forms of Internet voting have been designed, and while
it has a significant amount of supporters, security
experts believe that these systems should not replace
paper-based ones since the former systems introduce
multiple security risks.

Supporters of online voting believe in some, if not
all of the following advantages of incorporating this
technology in the election process:

• Election costs could be reduced: less people would
need to be hired and there would be no need to
print ballots or buy envelops.

• Simplifies the counting process and gives accurate
results: a simple piece of code can quickly compute
the total number of votes per candidate as opposed
to waiting for people to manually count votes.

• Makes the system more accessible: Citizens could
easily vote while abroad since the internet is
ubiquitous.

However, security experts believe that implementing
internet voting for important elections is very
irresponsible since the system would be exposed
to several threats that come inherently with the use of
the internet. The major concerns are

• The entity in charge of the system might have
enough power to corrupt the system: whoever
has control over the software running the system

could potentially change a vote without leaving
any evidence. This would violate the requirements
1), 3), 4) and maybe 5) of voting systems.

• The system could be attacked: Online systems are
vulnerable to cyber attacks that can either affect
the functionality of the system, leak confidential
information or modify the behavior of the system
in unexpected ways that can be difficult to identify.
This would violate the requirements 3) and 4) of
voting systems.

• These systems might ease traceability of votes
to voters: The voting system itself could contain
information that reveals information about the
voter like identification number, passwords or even
the vote itself. This would violate the requirements
2) and 3) of voting systems.

• Machines used for voting can be hacked: This
is perhaps the biggest concern since there is not
much administrators of an election could do to
prevent devices from being victims of hackers. If a
machine used for voting is infected with malware
the votes can be tampered or trace independently
of how secure the voting system is. This would
violate the requirements 2) and 3) of voting
systems.

• Machines could fail to authenticate identities: If
for example authentication relies on passwords or
other secret information, adversaries could steal
that information from voters and use it to vote with
their identity. This would violate the requirements
1), 2) and 3) of voting systems.

The first governmental election that used Internet voting
in the United States was the presidential election of the
Reform Party in 1996 [7]. Since then, internet voting
started to become a more popular idea but with its
popularity more security risks also emerged. In 2000,
the Democratic Party hired a private company to run
its presidential primary election in Arizona with an
internet voting system [6]. As a result, multiple security
threats including denial of service attacks, voter identity
thefts and hacking of voting machines were ubiquitous.
The dangers of such an election were strongly exposed
and a few years later the standards of voting systems

2



were strengthened by the Federal Election Commission
of the U.S.

Currently, several states allow online voting through
web portals or email. However, the majority of the
citizens still do not approve this voting methods since
votes cast in this form are exposed to security attacks
from the administrators of an election, other citizens or
even foreign adversaries.

II. BLOCKCHAIN-BASED VOTING SYSTEM
[BB]

The blockchain techonolgy keeps a list of records that
are very difficult to modify. Specifically, the blockchain
data structure is a public distributed ledger formed by
appending blocks that are linked as a chain: each block
contains a hash value that is a function of the previous
block. This design assures immutability of the ledger,
since modifying the data in one of the blocks would
immediately create inconsistencies in the hashes of the
descendent blocks.

In a blockchain implementation, writes to the ledger
are only allowed if the nodes of the network reach
concensus and approve the write. Read accesses to
the ledger are denoted as calls and write accesses
as transactions. Transactions are then monitored and
the consensus protocol used to approve or reject
transactions varies with each implementation. These
characteristics make the blockchain technology a
distributed and decentralized system that does not grant
complete power to any party individually but instead
gives equal partial power to multiple parties.

The fact that data deployed onto the blockchain can
never be modified and that there is no central entity in
control of the ledger has naturally make many people
believe that this technology could be the solution to
the security problems present in online voting systems.
And while it makes sense that appending votes onto the
blockchain can protect votes from being modified, there
is a lot of work that needs to be done to fill the gaps:
how would authentication be successfully achieved?
How would cyberattacks be prevented? Who should
create and have control over the blockchain network?
How do we guarantee that votes are secret?

In this section we will describe and analyze the
election design that was proposed by HjÃąlmarsson and
Hreiðarsson to implement a blockchain technology as
part of a voting system [1]. We have taken the role of
administrators of an election and we have implemented
a voting web application following their design in
order to better understand their proposal as well as to
explore possible security attacks of the system. This
design consists of smart contracts that are deployed
onto a private blockchain and allow to represent votes
as irreversible transactions.

A. Blockchain Network

Blockchains have several types of access control. For
this implementation we need a private blockchain
network in which the nodes of the network represent a
partition of the voting population. While the design by
HjÃąlmarsson and Hreiðarsson specifically focuses on
liquid democracies and considers one node per voting
district, we here generalize this approach by simply
considering any partition of the voters, which could
be more granular or more general than a district-based
partition. In addition, in this design the nodes are
assumed to be trusted parties from each partition set
with high computing power.

The main advantage of private blockchains is that they
restrict both read and write accesses to specific par-
ticipants. As a consequence, private blockchains are
composed of a limited number of fixed nodes, which
provides other benefits like making transactions cheaper
and faster as they need to be validated only by a few
number of nodes. We then consider a network with a set
of k nodes

N = {n1, ...,nk}

that are in one-to-one correspondence with the elements
of a partition

P = {P1, ...,Pk}

of the set of eligible voters for the election. The exact
value of k for a specific election as well as the exact
partition sets depend on the level of distribution desired
for the system as well as other considerations like the
physical location of voters.

Bootnodes: Besides the nodes in N, which keep an
identical copy of the ledger and can read the blocks

3



or write on them, our network must also include other
type of nodes called bootnodes, which do not keep the
state of the blockchain. The unique purpose of these
nodes is to allow the nodes in N (the partition nodes)
to discover each other and keep the same copy of the
ledger.

Concensus Protocol: The Proof of Authority [PoA] is
the consensus protocol implemented for this blockchain
network. Unlike the more common Proof of Work
protocol used for the bitcoin blockchain, in which
the nodes must solve complicated puzzles in order to
append transactions to the blockchain and get bitcoin
rewards, the PoA protocol relies on validator nodes
that get payed to verify the validity of a transaction.
Specifically, when a transaction is requested, each
node that is declared as a validator in the blockchain
network proceeds to either approve it or reject it. The
transaction is then appended onto the ledger if and only
if the majority of the validators approve it.

In this implementation, all nodes in N are declared
as validators and therefore a vote transaction is
successfully appended onto the blockchain if an only if
the majority of the partition nodes approve it. Standard
transactions include information about the sender,
the receiver and the timestamp of the transaction;
however, transactions in this design must only include
the transaction ID, the block number, the district from
which the vote was cast and the value of the vote. We
also clarify that while it is possible that this partition
nodes become corrupted and validate fraudulent votes,
the reputation of these validators is at stake and at least
half of them would need to become corrupt to approve
a bad transaction.

B. Wallets

Users of a blockchain network need to own at least
one account in the blockchain. An account consists of
a public key that is used to identify transactions to and
from the user, as well as a private key that the users
use to prove that an account is indeed theirs. Because
public keys tend to be very large, blockchain uses
shorter strings called addresses that are representative
forms of the public key for an account. A wallet is a
common program used for managing users’ accounts
and their respective keys.

In order to allow voters in the election to cast their votes
as blockchain transactions, the election administrators
must create the blockchain network described above
as well as one wallet with one account per eligible
voter. If the system were able to match accounts to
their corresponding owners, this election system would
violate requirements 2) and 3) of voting systems.
However, the blockchain network needs to somehow
verify that a voter is indeed the owner of the account
that he or she is using to cast the vote. To circumvent
this problem, the use of Zero Knowledge Interactive
Proofs can be used to generate and authenticate voter’s
accounts [1].

Zero Knowledge Proofs [ZKP]: This cryptographical
tool allows one party to prove to another party that they
know a specific piece of data without revealing any
information other than their knowledge of that value.
For instance, consider a signature scheme in which the
parties involved have a secret key x and a public key
gx. Suppose Alice wants to prove to Bob that gx is her
public key. A round of a Zero Knowledge Proof would
go as follows:

• Alice chooses a random number r and sends m= gr

mod p to Bob.
• Bob asks Alice either for the value of x + r

mod (p−1) or the value of gx+r mod (p−1).
• Alice sends Bob a value y
• Bob verifies that y satisfies either gx · m ≡

gy mod (p−1) or m≡ gy mod p respectively.

If Alice does not know the value of x she has a 1
2

probability of answering correctly Bob’s request. This
means that after multiple rounds Bob can confirm that
Alice knows x if she answers consistently every time.

Non-Interactive Zero Knowledge Proofs [NIZKP]:
This method is a variant of ZKPs in which interaction
between the two parties is not necessary. Instead, a
reference string that is common and shared between
them is enough for reaching Zero Knowledge proof
without any rounds of repetitive interactions.

Voter Authentication: In their implementation,
HjÃąlmarsson and Hreiðarsson assume that each voter
will need to register for the election by physically

4



presenting a government ID to election administrators.
During registration, eligible voters would be assigned
an electronic ID and would be prompted to choose a
6-digit PIN for the corresponding ID using a secure
service provider for identity verification. This design
assumes that NIZKPs are used to generate the wallets
of eligible voters and to prove that a specific wallet
belongs to a specific voter without revealing the identity
of the voter.

Therefore, when a users want to vote they can
simply use their electronic ID and PIN to authenticate
themselves and get access to their wallet. The wallet
must also contain the partition node that will be used
by the user to interact with the ballot smart contract
corresponding to the set where the voter belongs.

C. Smart Contracts

Smart contracts are pieces of code that self-execute in
a decentralized application. The functions contained in
the smart contracts must specify the agreements of the
contract, which can be deployed onto a blockchain to
make those agreements trackable and irreversible. After
deployment the code cannot be changed and the parties
involved are bound to follow the rules as written. A
huge advantage of these contracts is that they are self-
verifiable as their code specify requirements that trigger
events when those are not satisfied. In addition, calling
a public function in the smart contract corresponds to
making a transaction in the blockchain. In our case,
this means that a function can only be executed if it
satisfies the contract’s rules and the majority of the
validator nodes in the blockchain network successfully
approve that the account making the transaction has
permission to do so.

In this implementation, smart contracts are used as
ballots to enforce the election agreement. Specifically,
we want the contract to contain a voting function that
can only be called once per valid voter and that is
executed as a transaction in the blockchain. Moreover,
in order to facilitate the vote count process, we want
our contract to provide functionality for checking
the total number of votes that a specific candidate
has. However, since voters should not have access to
partial vote counts before casting their votes, only the
administrators of the election should be able to call

these functions.

For the system to be distributed and decentralized, as
well as to optimize for performance, we use a ballot
contract per partition set Pi and we restrict permissions
for the ith ballot contract so that only the corresponding
node ni can interact with it. Thus, voters that belong
to Pi can execute the vote function in the ith ballot
contract by connecting to the network through node ni.
To enforce that voters vote in the center corresponding
to the partition set they belong to, the voter’s wallet
contain information on the node they must interact with
to make their vote transaction.

Fig. 1. Functionality of a Ballot contract.

In order to deploy all k ballot contracts at once, we use a
factory smart contract that creates as many instances of
Ballot contracts as necessary and deploys them onto the
blockchain. We modified the factory contract proposed
by HjÃąlmarsson and Hreiðarsson in order to make the
application easier to implement. Specifically, we added
functionality so that functions of a particular ballot
contract can be called from the factory contract and not
necessarily directly from the Ballot. This simplifies our
implementations since nodes only directly interact with
a single contract. These modifications do not affect the
purpose of the distributed design because nodes can only
call these intermediate functions if they have permission
to interact with the corresponding ballot contract.

5



Fig. 2. Functionality of a Factory contract.

D. Implementation Software and Parameters

To run our election as a smart contract application
we utilize one of the implementations of the Etherum
protocol called Geth. Taking the role of administrators
of an election, we used this interface to create our
private blockchain with three nodes that implemented
the Proof of Authority consensus protocol with a
transaction rate of 5 seconds. We used only one
bootnode for discovery of nodes since our resources
were limited and it was enough for the security analysis
of this system design.

Moreover, we wrote our smart contracts with the
programming language Solidity and used the Truffle
development environment to compile and deploy
them onto the blockchain. The Truffle framework
also allowed us to interact with the contracts after
deployment via web3 in client-side JavaScript.

For this application we created a small election with only
3 candidates, 10 voters and 3 partition sets. We have
left out the authentication part in our implementation,
but we will assume the NIZKP distribution of wallets
as indicated earlier for the security analysis. Similarly,
our implementation does not modify the default data
included in a transaction but we will analyze the system
assuming that timestamps and senders’ addresses are not
recorded.

Fig. 3. File structure of our blockchain network.

E. Security Analysis

We will now proceed to analyze both the strengths
and weaknesses of the BB system described above
in terms of security. While we have used our own
implementation to test some of the arguments that we
will discuss, we have not implement all the attacks
discussed in this section.

Security Analysis

• The administrators of the election have complete
power over the system and could corrupt it: as
administrators of the implemented election we
are able to manipulate the blockchain network in
multiple ways. For example, we can create more

6



wallets that do not correspond to eligible voter and
use them to fake votes or to allow non eligible
voters to vote. This is particularly dangerous
because as a voting right no one should be able
to match the address that committed a transaction
with a particular voter, and therefore verifying that
wallets belong to an eligible voter and not to a
ghost voter becomes difficult.

• This distributed and decentralized system is more
resistant to attacks: Most attacks would need to
successfully attack multiple nodes in the network
in order to affect the system’s functionality. A
DDoS attack, for instance, would need to make
unavailable all bootnodes in order to affect the
interactions between validator nodes. While this is
still a possible attack, the proposed system is more
resistant than other decentralized applications.
In addition, other approaches like a Sybil attack
are executable in this system because the use of
a private restricts access to create new nodes.
In addition, corruption of a single node in the
network does not allow for corruption of the ledger
since honesty from the majority of the nodes avoid
corruption of the blockchain.

• Traceability of votes to voters is not allowed: The
use of Non Interactive Zero Knowledge Proofs
prevents the system from matching wallets to the
voters’ identities while still verifying that the voter
casting the vote is the owner of the wallet from
which the transaction is made. In addition, the fact
that transactions do not include the address from
which they were sent nor the time at which they
were made prevents adversaries from using time
data to figure out who made a specific transaction,
not even when the adversary knows the address of
the voters’ wallet.

• The devices from where voters interact with the
blockchain can be hacked: by inserting a simple
script that records the moves, scrolls and clicks of
the mouse in a device used for voting, we were
able to find the candidate for which a specific
voter chose to vote. Other possible attacks include
modification of the interface so as to flip the order
of the candidates and make voters believe they are
voting for a different candidate, or even modifying

the parameters when calling the vote function to
select a different candidate.

• Failure to authenticate identities: in this system
all what a voter needs to be authenticated by
the system and gain access to the corresponding
wallet is the electronic ID and a 6-digit PIN, and
therefore adversaries could threat voters to steal
their credentials and vote with their identities.
Including other types of identity authentication
like body metrics could help alleviate this risk,
although it would still be possible to hack the
authentication devices to make them fail.

The code for our implementation can be found
at https://github.mit.edu/kimvc/6.
857-Voting-System.git and a video of the
application as well as an attack can be found at
https://www.youtube.com/watch?time_
continue=6&v=RkYbPhdXGFI.

III. OTHER ONLINE VOTING SYSTEMS

Currently, there are several online voting systems that
are being used in the United States both for small and
large elections. Here we will analyze the two of those
that seem to be the most popular: Helios and Voatz. We
will describe their designs and compare both them to
the BB System in terms of security guarantees and risks.

A. Helios

Helios is an online voting system that claims end-to-end
verifiability. This reflects in the system that is used
to audit ballots and to track that a ballot has been
submitted or tallied. Note that the makers of Helios
themselves do not believe that their software should
be used for major federal elections, because they
believe voter’s computers are not secure enough to
be used in elections that are exposed to powerful attacks.

Helios security guarantees are based on El Gamal re-
encryption, which is used to enforce anonymity of the
votes. Voting in this system works in the following way:

(a) An administrator creates the election and inputs
the names of the candidates and the exact times
at which the election must begin and end. The

7

https://github.mit.edu/kimvc/6.857-Voting-System.git
https://github.mit.edu/kimvc/6.857-Voting-System.git
https://www.youtube.com/watch?time_continue=6&v=RkYbPhdXGFI
https://www.youtube.com/watch?time_continue=6&v=RkYbPhdXGFI


administrator next creates a list of emails to which
credentials must be sent. These emails contain the
username and password for each person who is
an eligible voter and the administrator never has
access to such passwords.

(b) A voter uses her credentials and casts her vote
using the online interface. At the end, the voter
has the option to audit her vote, in which case the
signature is checked to demonstrate that the ballot
is actually being cast correctly.

(c) At the end of the election, the tally takes place
and the tracker associated with each ballot informs
voters that their vote has been tallied. Since the
tracker is a finger print of the encryption of the
vote itself, it can be used to specifically reference
the voter.

Security Analysis:
• The administrator has no power to corrupt the

system since Helios provides unconditional
integrity. This is a big improvement over the
BB system, in which despite of the fact that the
system was distributed and descentralized, the
administrators had power to create extra wallets,
and corruption of multiple nodes could corrupt the
entire system.

• A disadvantage of this system is that Helios is
vulnerable to attacks like web browser corruption.
While the BB system did not specify user interface
details, this could be an attack that affects that
system as well. In general, Helios’ major problem
is that the server itself has complete control over
the election and therefore voters’ privacy and
election honesty relies on Helios.

• Similar to the BB system, Helios guarantees that
voters’ ballots are completely secret. While we are
able to see who voted, we are not able to see what
each individual person voted for, nor indeed is it
a tall possible to find out. The tally happens only
at the end, and is conducted by combining the
encryptions of the original votes, and only then
decrypting.

• Like every other internet voting system, Helios’

security cannot protect the election against attacks
to the voters’ machines.

• Like in the BB system, the authentication method
in this system allows for violations of the
requirements of a voting system. Using emails
for authentication means that an adversary could
vote with someone else’s identity by hacking the
voters’ email or threatening them to show them
their usernames and passwords.

B. Voatz

Voatz is a mobile elections platform that runs
on only latest smartphones and makes use of a
descentralized blockchain network. It relies on the
security of smartphone technology and immutability
of a blockchain. This implies that the voters need to
have the latest smartphone and the Voatz app in order
to be able to vote. Voters who do not own one of
these devices will then not be able to vote through
Voetz. Voting in this system works in the following way:

(a) Election officials grant Voatz access to a database
containing information of all the voters.

(b) Before voters cast a vote, they must authenticate
their identity by scanning a valid ID and sending
a live snapshot as well as their their fingerprint.
The Voetz app matches the voter’s fingerprint to
the device and then verifies the validity of the ID
and the snapshot.

(c) Each vote is then represented as a transaction that
must be verified by a specific set of servers.

Security Analysis

• Vaotz prints paper ballots for each vote. These
ballots are then audited to verify that each voter
voted exactly once and that all the votes were
counted. This limits the administrator’s ability to
modify the votes or add fake ones.

• Similar to Helious, the server itself has complete
control over the election and could corrupt it;
Voatz gains access to databases of voters and
the developers themselves could possibly be

8



collecting all the voting data they claim that is
secure and anonimous. Even though Voatz has
been largely used across the U.S. many people
are still reluctant to accept Vaotz as an official
system for government elections, since it is hard to
trust a private company when there is a lot at stake.

• In terms of traceability, Vaotz ensures it on a
different way than the BB system. The identity
of each voter is protected twice: first by the app
in the smartphone, and then in the blockchain.
It also uses end-to-end encryption. Note that this
system generates accounts for the voters and has
a database for them, implying that the system
knows which account corresponds to which voters.
However, for each vote the name of the voter is
anonymous and encrypted. Thus, there is no way
of telling the voter’s account from tracing a vote.

• In terms of security of the device used for voting,
unlike the BB system, Voatz takes measures to
ensure that any device used for voting is not
hacked. In order to achieve that, it only allows
last generation smartphones to be used. That
way it takes advantages of their various security
capabilities. For example, it detects malware or
changes on the Operating System. This greatly
lowers the risk of the device being attacked.
However, this negatively impacts the acessibility
of the system, as many voters do not own one of
these devices.

IV. CONCLUSION
The blockchain system analyzed in this paper does
not satisfy the essential security requirements because
despite the cutting-edge technology used in the imple-
mentation, there are always security concerns inherent to
Internet Voting. We believe the most important limitation
for implementing secure internet voting systems is that
the devices used for voting could be hacked indepen-
dently of how secure the voting system is.

REFERENCES

[1] Friðrik Þ. HjÃąlmarsson, Gunnlaugur K. Hreiðarsson.
Blockchain-Based E-Voting System. School of Computer
Science, Reykjavik University, Iceland, (2018).

[2] Voatz, https://voatz.com/faq.html
[3] Electronic Voting, http://lorrie.cranor.org/pubs/evoting-

encyclopedia.html.

[4] Ben Adida. Helios: Web-based Open-Audit Voting, Harvard Uni-
versity, (2008).

[5] Ronald L. Rivest. Internet Voting—Seriously?, EVN Conference,
(2016).

[6] Dennis Berman. We the E-People, BusinessWeek, (2000).
[7] Arizona Democratic Party Selects Votation.com to Hold World’s

First Legally-Binding Public Election Over the Internet, The Free
Library, (2014).

9


	INTRODUCTION
	Internet Voting

	BLOCKCHAIN-BASED VOTING SYSTEM [BB]
	Blockchain Network
	Wallets
	Smart Contracts
	Implementation Software and Parameters
	Security Analysis

	OTHER ONLINE VOTING SYSTEMS
	Helios
	Voatz

	CONCLUSION
	References

