
Provable Fairness

Lujing Cen, Gloria Fang, Andrea Jaba
{lujing, yfang, adjaba}@mit.edu

1 Introduction

Our project focuses on provable fairness, a relatively new emergence in the domain of online
gambling that has not been well studied. The necessity for provable fairness arises from the
fact that it would be very easy for an online gambling service to gain an unfair advantage
through manipulating the outcome of a supposedly randomized game.

We seek to survey the current landscape of provable fairness on the Internet and analyze
them accordingly in a generalized protocol. We will show a few practical and theoretical
attacks against existing provable fairness schemes or relaxed versions of those schemes from
the perspective of both the client and the server. Our analysis methods will mostly rely on a
site’s public protocol.

In addition, we propose a provable fairness scheme that addresses some of the issues that
we have uncovered while surveying existing protocols. We will prove that our scheme
satisfies a strict definition of provable fairness and demonstrate how a few common game
types could be efficiently represented in this scheme.

1.1 Significance

With advances in cryptography and technology, many people have migrated from traditional
gambling to online gambling with cryptocurrencies. In fact, the size of the Bitcoin gambling
market is estimated to be over 4 billion dollars since its rise in 2014 [1]. A similar emergence
has been seen in the gaming industry, where the markets for loot boxes and skin gambling
are estimated to hit 50 billion dollars by 2022 [2].

For these sizable markets, the consequences of cheating could be significant. Most gamblers
only play because they feel that they have a fair chance of winning – or at least aren’t at an
unexpected disadvantage. Likewise, the gambling sites would like to believe that they are
able to make some profits in expectation. This market exists on a certain amount of trust
between the players and the house. The games being played should be fair (with regards to
the advertised house edge) and have enough randomness in their outcomes.

The challenge arises in developing schemes for different game types such that no party can
gain an unfair advantage. These schemes must also present some form of uncertainty so that
players are incentivized to participate. A vulnerability in these schemes that allows any party
to gain even a slight advantage could result in huge wins or huge losses over the course of

many transactions, which can happen more anonymously and in much larger volumes
compared to traditional gambling.

1.2 Background

Most gambling sites that want to establish trust with their players use cryptography and the
idea of provable fairness. An example exchange is as follows. Suppose you are playing on a
server. First, the server commits to a random seed. The server does not reveal the seed
immediately, but you want to be sure the server does not change its commitment after the
exchange is over. To prove that the seed is not changed during a given transaction, the server
gives you ℎ(server seed), where ℎ is a hash function.

Next, you pick a client seed. This client seed could be generated randomly by the server, but
you must have the option of modifying it to whatever you want. The important observation
at this step is that server cannot know of this client seed beforehand, otherwise it may choose
a server seed that maximizes its profits unfairly.

Once the server receives the client seed, it will compute another function that uses both the
client seed and server seed to determine the outcome of the game. This function must be
deterministic and publicly verifiable.

At the end of the game, the server will publish the result of the game as well as its seed. You
can verify that the server did not change its initial commitment by hashing the server seed.
Furthermore, you can apply the deterministic function to ensure that the outcome is
consistent with the given server seed and client seed [3].

Some benefits of this system include being able to verify that both parties are not cheating
and helping detect security breaches. For example, if the server’s published seed does not
match the hash value it provided initially, it is possible that the server is not trustworthy or
that a third party has tampered with the results.

Of course, this notion of provable fairness relies on the security of the hash function, as well
as the generation of initial seeds. There are many possible exploitations during every step of
the exchange. For example, if the client seed being generated is predictable, the server could
select an initial seed value that deliberately puts the client at a disadvantage.

1.3 Previous Works

There have been studies on how to create a provably fair gaming algorithm. A paper by
Podulszló [15] splits the seed into two: hostSeed and publicSeed. Before the start of each
game, the host will have to commit to a hostSeed and display the commitment to all players,
who only afterwards will generate and contribute to the publicSeed. A combination of these
two seeds will then be used as an initialization parameter for randomization to reduce

opportunities for manipulation. According to this paper, a provably fair algorithm is also a
deterministic algorithm that will return the same output with the same input. It must ensure
that the integrity of the hostSeed can be verified by all participants and is public to every
participant of the game. In generating a sequence of random outputs, a cryptographic nonce
should be used – once for each seed set, to produce unique outputs for consecutive bets using
the same seeds.

While provably fair schemes guarantee that the server does not change seeds based on client
seeds, it is not a guarantee that the server seeds are generated at random. Shufflepuff is a
theoretical tool that casinos can use to optimize winnings against players, and it operates on
the fact that there are initial seeds that give more advantage (in addition to the advertised
house edge) to the server regardless of the value of the client seed. These advantageous
seeds are easily found by optimizing for different winning scenarios when the seed space
does not cover the arrangement space [13].

Weak random number generators can also undermine provably fair algorithms. In 2015,
CSGOJackpot, a gambling website, was exploited in such a way that the client can determine
the “winning percentage,” which is analogous to the server seed. This is because the server
gives the client ℎ𝑎𝑠ℎ(blinding, “winning percentage”) before each game as part of provable
fairness, and both blinding and “winning percentage” came from calls to their weak random
number generator. Since the winning ticket is simply the “winning percentage” multiplied by
the total number of tickets, an attacker with this information can manipulate the game to
his/her advantage, which is also not fair [14].

2 Definitions

We first seek to formally define provable fairness in the context of cryptography. Let Alice,
who is the server/house, be denoted by 𝐴. Let Bob, who is the client/player, be denoted by
𝐵. Note that there are games involving multiple players, but our project is mainly concerned
with two-player games.

Alice picks some seed 𝑠𝐴 and commits using a proof 𝑝𝐴 = 𝐶(𝑠𝐴) using some public function
𝐶. Bob receives 𝑠𝐴, and chooses some seed 𝑠𝐵. Then, Bob sends 𝑠𝐵 to Alice, who computes the
result of the game 𝑟 = 𝐺(𝑠𝐴, 𝑠𝐵) using some deterministic and public game function 𝐺.
Finally, Alice sends Bob 𝑟 and 𝑠𝐴. Bob will verify that 𝑉(𝑝𝐴, 𝑠𝐴) = 1 using a verification
function 𝑉 that returns 1 if and only if 𝑝𝐴 is a valid proof for 𝑠𝐴. In addition, he will check that
𝑟 = 𝐺(𝑠𝐴, 𝑠𝐵), then conclude that the game was fair.

One might notice that 𝐶 resembles the commit step of a commitment scheme. However, all
existing provable fairness schemes simply choose 𝐶 to be a hash function even though a
provable fairness scheme is certainly possible with another commitment scheme. One
potential explanation is that 𝐶 needs to be simple to verify, and many commitment schemes
do not have easy-to-use online tools for verification.

The seeds for both parties are always chosen from seed spaces 𝜎𝐴 and 𝜎𝐵, each with finite
size, such that 𝑠𝐴 ∈ 𝜎𝐴 and 𝑠𝐵 ∈ 𝜎𝐵. The seed spaces are always defined by the protocol and
can vary greatly. Although it is not strictly necessary for |𝜎𝐴| = |𝜎𝐵|, a protocol is only
provably fair if is computationally infeasible for one party to select a seed that produces
noticeable deviations from the expected house edge when the other party chooses their seed
uniformly at random.

This criterion ensures that if one party adopts a uniformly random strategy for selecting
seeds, the outcome of the game cannot be unfairly skewed in favor of the other party.
However, this criterion does not necessarily force the outcome of the game to be random.
We consider a scheme to be provably fair if it satisfies this criterion.

3 Existing Schemes

In this section, we present our analyses of existing schemes which are of some interest in
that they are exploitable from the perspective of the client or the server. Many of these
schemes use an incrementing nonce 𝑛 in addition to 𝑠𝐴 and 𝑠𝐵. Thus, the server reveals 𝑠𝐴
only after a certain 𝑛 that is usually decided by the client. This means that 𝑠𝐵 contains the
nonce and that 𝑟 = 𝐺(𝑠𝐴, 𝑠𝐵) is a sequence of verifiable results rather than a single result.
Other variations of the generalized scheme will be presented in the individual sections.

3.1 Proof Evasion

Suppose Alice chooses a function 𝐶(𝑠𝐴) but never actually reveals 𝑠𝐴 or the method by which
to verify 𝐶(𝑠𝐴). Then, Alice convinces Bob to compute 𝑉(𝑝𝐴, 𝑠𝐴

′) where 𝑠𝐴
′ ≠ 𝑠𝐴. Furthermore,

she convinces Bob to accept the fact that there is no public game function at all. While this
oversight is evident in this context, it is less evident to users who are not well versed in
provable fairness. One such service that uses this exploit is MysteryBrand [4].

We provide a more concrete version of the protocol [16] as used by the service. Let 𝐻 be the
MD5 hash function. The server commits to a value 𝐶(𝑠𝐴), likely to be 𝐻(𝑠𝐴). The client
provides the server 𝑠𝐵. The server may compute the result using a game function, but this

function is not revealed. The player is only given the result along with 𝐻(𝑠𝐵 || 𝐻(𝑠𝐴)), an

irrelevant proof. While it is certainly possible to verify that the proof resulted from hashing
the concatenation of the two values, it by no means proves the outcome of the game since
there is no public game function.

In effect, this protocol is not very different from one without any provable fairness. The
criterion of provable fairness is violated because the server can simply choose any 𝑠𝐴 and
game function. Whatever the expected house edge is, the server can easily manipulate the
results as the result computation is entirely opaque to the client.

3.2 SHA Length Extension

Let 𝐻 be the SHA-512 hash function. Suppose Alice chooses 𝜎𝐴 to be the set of all possible
128-byte strings and 𝐶(𝑠𝐴) = 𝐻(𝑠𝐴). She also chooses 𝐺(𝑠𝐴, 𝑠𝐵) = 𝐻(𝑠𝐴 || 𝑠𝐵). This is a
relaxed version of the scheme used by Bitsler [5]. We show that when 𝜎𝐵 permits strings
containing more than 128-bytes, Bob can efficiently manipulate the result of the game by
exploiting the Merkle–Damgård construction of SHA-2 [6].

This client-based attack is possible if |𝑠𝐴| is known and fixed, which is generally the case in
provably fair schemes. We will let ℎ(𝑎, 𝑏) be the single-block SHA-512 hash function that
does not apply any padding to its inputs. In the context of the Merkle–Damgård construction,
the two inputs to ℎ are the previous block’s output hash and the current message block. Note
that the block size for ℎ is 1024 bits. We work through the steps of the game interaction.

First, the server sends the client 𝐶(𝑠𝐴) = 𝐻(𝑠𝐴). However, by the specifications of SHA-2,
when 𝑠𝐴 is less than a block size, it will be padded with 0b100…0 followed by a 64-bit integer
representing the message length. When 𝑠𝐴 is exactly a block size, there will be an entire block
of padding using the same scheme. Given that |𝑠𝐴| is exactly one block, the value sent to the

client is 𝐻(𝑠𝐴) = ℎ(ℎ(𝐼𝑉, 𝑠𝐴), pad(𝑠𝐴)) where 𝐼𝑉 is the public initialization vector of SHA-2.

To perform the exploit, the client will select 𝑠𝐵 = pad(𝑠𝐴) || 𝑏 where 𝑏 is an adversarial seed
chosen specifically to skew the result of the game in favor of the client. The client knows that
the server will compute the game function as 𝐻(𝑠𝐴 || 𝑠𝐵) and will not change its commitment
to 𝐻(𝑠𝐴). Thus, 𝐻(𝑠𝐴 || 𝑠𝐵) becomes ℎ(𝐻(𝑠𝐴), 𝑏 || pad(𝑠𝐴 || 𝑠𝐵)) under the adversarial seed.

Note that it is easy to compute pad(𝑠𝐴 || 𝑠𝐵). Namely, the client controls the length of 𝑠𝐵,
thereby controlling the length of 𝑠𝐴 || 𝑠𝐵, which is at least two blocks long. We assume that
the padding of the entire message along with 𝑏 does not require a fourth block.

The client simply enumerates different 𝑏 values until the result is desirable. In expectation,
under the random oracle model, it should take no more than a few tries in simple dice games
to get a roll below or above a certain threshold. The outcome of the dice roll is usually
determined by interpreting some bits of the output hash as a number, which should be more
or less uniformly distributed as 𝑏 varies.

One potential defense which is employed by Bitsler is to insert a separator in between the
server seed and client seed. For example, the game function is computed as 𝐻(𝑠𝐴 || , || 𝑠𝐵).
This prevents the attack described above, because the binary representation of a comma

does not begin with a 1, and thus the client is unable to compute 𝐻(𝑠𝐴 || , || 𝑠𝐵) using 𝐻(𝑠𝐴)
since the client is not able to inject pad(𝑠𝐴) directly after 𝑠𝐴. Another potential solution is to
simply restrict 𝜎𝐵 to contain only alphanumeric characters (since none of these characters
can constitute the first byte of padding) or to restrict the length of the seed to be small
enough such that |𝜎𝐵 || pad(𝜎𝐴 || 𝜎𝐵)| is less than 128 bytes. However, concatenating the
client seed after the server seed is somewhat risky, and could present vulnerabilities if
incorrectly implemented.

3.3 HMAC Key Exposure

Let 𝐻 be the SHA-512 hash function. Suppose Alice again chooses 𝐶(𝑠𝐴) = 𝐻(𝑠𝐴), but naively
chooses 𝜎𝐴 to be the set of all possible 𝑎-byte strings where 𝑎 > 128 bytes. She also chooses
the function 𝐺(𝑠𝐴, 𝑠𝐵) = 𝑀𝐴𝐶(𝑠𝐴, 𝑠𝐵), where 𝑀𝐴𝐶 is the hash-based message authentication
code (HMAC) that uses SHA-512 and follows the specifications of RFC 2104 [7], which is used
in most implementations. This scheme is a relaxed version of the scheme used by Fair-Dice
[8] and BitDice [17]. Bob can efficiently manipulate the result by exploiting the fact that Alice
has effectively leaked the key to the HMAC function.

The definition of the HMAC function given a key 𝐾 and message 𝑚 is shown below.

𝑀𝐴𝐶(𝐾, 𝑚) = 𝐻((𝐾′ ⊕ 𝑜𝑝𝑎𝑑) || 𝐻(𝐾′ ⊕ 𝑖𝑝𝑎𝑑) || 𝑚)

𝐾′ = {
𝐻(𝐾) 𝐾 is larger than block size
𝐾 otherwise

A server employing this scheme will usually choose 𝐺(𝑠𝐴, 𝑠𝐵) = 𝑀𝐴𝐶(𝑠𝐴, 𝑠𝐵). If the client

observes 𝐻(𝑠𝐴) and knows that that |𝑠𝐴| > 128 bytes, then the client now has knowledge of

𝐾′ in the HMAC function. The values of 𝑜𝑝𝑎𝑑 and 𝑖𝑝𝑎𝑑 are public. Thus, the client has

obtained all the necessary values of the game function to select an advantageous client seed

𝑠𝐵. Like the previous attack, the client simply brute forces a few values of 𝑠𝐵 until the output

of the game function is desirable.

There are a few different defenses to this attack. For one, the server can simply choose |𝑠𝐴|

to be exactly the block size of the hash function, which in this case is 128 bytes. Assuming 𝑠𝐴

is derived from a cryptographically secure source, there is no reason to choose a seed which

is above 128 bytes, since the hash function only provides around 64 bytes of security.

Another security mechanism that is usually employed is to select a different hash function

𝐻′ and use that as the commitment function 𝐶. Even if the size of 𝑠𝐴 is above 128 bytes, if

𝐻(𝑠𝐴) cannot be easily computed from 𝐻′(𝑠𝐴), then this attack is ineffective.

It is also possible to use 𝐺(𝑠𝐴, 𝑠𝐵) = 𝑀𝐴𝐶(𝑠𝐵, 𝑠𝐴), since 𝐻(𝑚) contains padding and the

length of 𝑠𝐴. Revealing 𝐻(𝑚) does not permit the client to easily compute 𝑀𝐴𝐶(𝑠𝐵, 𝑚), since

the client cannot force the contents of the outer hash function to be the same length as 𝑚.

3.4 Reversed Commitment Order

Suppose Alice manages to convince Bob to provide 𝑠𝐵 before she provides 𝐶(𝑠𝐴). We will
show in this case how Alice can gain a slight advantage over Bob (in excess of the advertised
house edge) using very little computational power. One example of a site employing this
flawed scheme is FortuneJack [11].

One additional aspect of the scheme used by FortuneJack is that the client can define what

constitutes the winning outcome. After providing 𝑠𝐵 and receiving 𝐶(𝑠𝐴), the client can freely

choose the corresponding winning range and thereby the payout. The server fixes a house

edge, so that defining one of the winning range or the payout automatically fixes the other

value such that in expectation, the house edge is achieved.

The client will generally pick between two game variants. The first is a high risk, high reward

game. In this game type, the client wins in less than 50% of the output space. The other option

is a low risk, low reward game where the client wins in more than 50% of the output space.

An example of this can be seen in the image above. By observing the public log for some time,

we noticed that a vast majority of players choose the high risk, high reward game, which is

perhaps more in the spirit of gambling.

Undoubtedly, the server has more clear data regarding client preferences. If the server can

target clients who play the high risk, high reward game, it is able to skew results in its favor

by selecting an advantageous 𝑠𝐴 given its observation of 𝑠𝐵. The reason is that if the client

wins in less than 50% of the output space, there is a range in the middle for which regardless

of which side the client chooses, the server will always win. For the example in the image,

the client wins if 𝐺(𝑠𝐴, 𝑠𝐵) ∈ [0,20) or 𝐺(𝑠𝐴, 𝑠𝐵) ∈ [80,100).

The client does not always switch its seed after every roll. Instead, the game function is

computed with an incrementing nonce over many rolls. This complicates the attack slightly,

but still allows for noticeable deviations assuming a reasonably bounded maximum nonce

value. The server can simply compute the average maximum nonce value for a given client

and use that as is target nonce.

Given both the client’s preference for the high risk, high reward game and a bounded nonce

𝑛∗, the server simply tries a few different hash values and computes the function below. Note

that 𝐺(𝑠𝐴, 𝑠𝐵) will output a list of rolls of length 𝑛∗.

𝑣(𝑠𝐴, 𝑠𝐵) = ∑ (𝐺(𝑠𝐴, 𝑠𝐵)[𝑖] − 50)2

𝑛∗−1

𝑖=0

arg max
𝑎

𝑓(𝑥) = { 𝑣(𝑎, 𝑠𝐵) ∣∣ 𝑎 ∈ 𝜎𝐴 }

In effect, the server is looking for a seed value 𝑎 = 𝑠𝐴 such that for a given 𝑛∗ and 𝑠𝐵, there
are more numbers close to 50 than would be in expectation. The value function 𝑣(𝑠𝐴, 𝑠𝐵) is
just one example of what the server might be optimizing for. A more sophisticated attacker
would use the behavior of the client to adjust the value function.

It is not feasible to get the most optimal value 𝑎 ∈ 𝜎𝐴, since the space of all seeds is too large.
However, it is enough for the server to select a small subset of 𝜎𝐴 and look for the best 𝑎
within that subset. To reduce suspicion, the server could simply generate random 𝑎 values
and compute the value functions for these seeds up to a certain time threshold, so that it is
harder to detect foul play.

There is not much the client can do to defend against this attack aside from choosing to play
the low risk, low reward variant of the game. Proving that the server is employing such a
scheme would be equally difficult without access to the entire history of rolls, which is not
available to the public. Testing the random number generator would require a large amount
of cryptocurrency, which might be out of reach for most clients.

3.5 Skewed Seed Space

Suppose Alice restricts or convinces Bob to select from seed space where |𝜎𝐵| is very small
compared to |𝜎𝐴|. This is the case with BGaming [18], whose client seed space is around 300,
and Diceum [12], whose default client seed space is around 1010. We will show that Alice
can select a subset of 𝜎𝐴 that performs strictly better assuming Bob chooses a seed uniformly
at random from 𝜎𝐵, which violates the criterion of provable fairness.

We will first consider the provably fair poker scheme in use by BGaming. The server commits
to an initial ordering of the deck. Note that in this case, there are 6 standard decks used in
the shuffle. Thus, |𝜎𝐴| is around 312!, including duplicate permutations. The server permits
the client to cut the deck once. Thus, the seed space of 𝜎𝐵 is only 312. We can immediately

see that it is very difficult for the client to brute force all 𝑠𝐴 ∈ 𝜎𝐴 in search of an optimal client
seed. However, it is relatively easy for the server to perform the same attack.

The server assumes that the client is using a relatively optimal Basic Strategy for blackjack
and is uniformly choosing a seed from 𝜎𝐵. Furthermore, the server will reshuffle the entire
deck after every game. The rules of the game are as follows: dealer stands on soft 17, double
down after splitting is allowed, and 3:2 payout. This attack does not rely on a specific rule
set, although for the purposes of demonstrating an actual implementation, we will use this
set of rules. Note that it has been shown that with the Basic Strategy, the house edge can be
reduced to around 0.42% [20].

We used a blackjack simulator [21] with the Basic Strategy from [19] and adapted it to show
an example attack. The server will randomly choose 100 initial shuffles of the deck and
evaluate each deck against a player employing the Basic Strategy for all possible 𝑠𝐵 ∈ 𝜎𝐵. For
each deck, the server computes the expected house edge. Finally, the server selects the best
ordering from the 100 initial shuffles that maximizes the expected house for an 𝑠𝐵 chosen
uniformly at random.

We first tested the implementation using just random initial shuffles to ensure that the house
edge was sufficiently close to the actual house edge. Indeed, the result comes out to slightly
less than 0.42%. Under our attack however, the server can consistently choose a deck
ordering that seems random but achieves a house edge of over 10%. Of course, the server
can perform even better if it could simulate more initial shuffles in a short period. For 100
shuffles, our Python implementation takes around 1 second, which means that such an attack
is very feasible.

This problem is not unique to deck shuffles. Any sufficiently small seed space should be
exploitable. For the scheme employed by Diceum, if the client chooses a seed that is within
the seed space of size 1010, we estimate that the server could distinguish the better of two
hashes using around two hours of computation time. Another interesting property of this
attack is that it can be precomputed and does not rely on a specific client seed as the input.
Thus, the server could simply precompute many optimal server seeds and select from those
more often, thereby biasing the outcome from the expected house edge.

3.6 Mersenne Shuffle

Suppose Alice uses the Mersenne Twister pseudorandom number generator (PRNG) as one
component in the game function to compute an initial shuffle of a deck. We will show how
Bob can exploit these shuffles to gain a significant advantage in games, often by fixing 𝑠𝐵 to
be a value such that the initial deck ordering is recoverable. A few sites that are potentially
using this scheme include BGaming [18], Coin Royale [22], and Nitrogen Sports [23].

Consider the code fragment below in JavaScript, which represents one implementation of a
shuffle using the Mersenne Twister. Note that lines 3 through 6 represent the Fisher-Yates
shuffle [9], which swaps different cards by querying the PRNG.

1. function shuffle(deck, seed) {
2. let mt = new MersenneTwister(seed);
3. for (let i = deck.length – 1; i > 0; i--) {
4. let j = mt.int32() % (i + 1);
5. [deck[i], deck[j]] = [deck[j], deck[i]];
6. }
7. }

There is one distinct problem with the shuffle method as above. Each seed corresponds to
only one permutation of the deck. Thus, if the seed space is sufficiently small, the client is
effectively able to brute force for the initial seed given an observation of a few cards in the
deck. Many implementations still rely on the Mersenne Twister with a 32-bit seed. However,
232 is very feasible to enumerate on a modern CPU within a few hours.

We propose the following attack that the client can employ. First, observe the first six cards
for a given initial shuffle. Then, go through all 232 seeds to determine which seed is consistent
with the observed ordering. If the Mersenne Twister in combination with the Fisher-Yates
shuffle generates decks that are somewhat uniformly random in the output space, then there
should only be one seed consistent with the observation.

52!

(52 − 𝑘)!
≥ 232 ∧ 𝑘 ∈ ℤ ⇒ 𝑘 ≥ 6

We tested this idea using a C++ implementation. We seeded the Mersenne Twister with the
number 42 and searched through all 232 possible initial seeds to see how many were
consistent with the first 4, 5, and 6 cards respectively. The computation took around 4 hours
to run on a single thread. The results are shown in the table below. Indeed, we see that for 6
cards, only one seed is consistent with the observation.

Matches First Number of Seeds
4 666
5 14
6 1

One defense against this attack is to seed the Mersenne Twister using a 64-bit seed, which
will make it more difficult for the client to brute force the seed space. However, a slightly
better alternative would be to fully seed the Mersenne Twister’s internal state with a
cryptographically secure source. However, this is less practical, as the Mersenne Twister has
a relatively large state buffer of 2.5 KiB, which might be challenging for the server because
entropy is not cheap when there are many players.

However, extracting the Mersenne Twister to a global state does not fully solve the problem.
Rather, it permits a different kind of attack. Consider the alternative implementation of the
shuffle method below, which relies on a Mersenne Twister instance which shares state with
past shuffles.

1. const MT = new MersenneTwister(SEED);
2. function shuffle(deck) {
3. for (let i = deck.length – 1; i > 0; i--) {
4. let j = MT.int32() % (i + 1);
5. [deck[i], deck[j]] = [deck[j], deck[i]];
6. }
7. }

The Mersenne Twister has a large period of 219997 − 1. If the initial seed was chosen from a
cryptographically secure source and provides enough bits of security, it is infeasible for the
client to brute force the initial seed given that they do not know how many shuffles have
taken place.

However, this does not prevent the client from recovering the internal state of the Mersenne
Twister and using it to predict all future shuffles. The Mersenne Twister uses 623 32-bit
numbers for its internal state. Previous attacks have already shown that by observing 624
32-bit outputs from the PRNG, it is possible to uncover the internal state since the Mersenne
Twister is not cryptographically secure, and all its internal operations are invertible [24].

We build on this idea by observing that the output of a Fisher-Yates shuffle is invertible given
the initial configuration. We will walk through an example to see how an adversary might
recover the state of the Mersenne Twister by observing deck outputs. Consider a simplified
deck 𝐷 below along with a shuffle of 𝐷 which we will call 𝐹.

𝐷 = [1, 2, 3, 4, 5]
𝐹 = [3, 4, 2, 5, 1]

[1, 2, 3, 4, 5] ⇒0 [5, 2, 3, 4, 1] ⇒0 [4, 2, 3, 5, 1] ⇒1 [4, 3, 2, 5, 1] ⇒0 [3, 4, 2, 5, 1]

Given 𝐷 and 𝐹, we can recover the 4 truncated numbers used to generate the shuffle 𝐹. We
observe that the Fisher-Yates shuffle swaps in a known order. It swaps the last card with
another number first. Once that swap is made, the last card’s position is fixed. By applying
this idea iteratively on all cards, we can effectively reverse the shuffle. By themselves, these
numbers are not very useful. However, some of the numbers contain enough information to
permit a side-channel attack.

The bit relation of the truncated numbers is difficult to reason about. However, when a
number is taken modulo 2𝑛, the 𝑛 lowest-order bits are revealed. For a deck containing 52
cards, there are various opportunities to observed leaked bits at positions 32, 16, 8, 4, and 2.
This represents a total leakage of 15 bits for a single shuffle.

An implementation already exists for taking truncated 8-bit outputs of the Mersenne Twister
and recovering its internal state [25]. This side-channel attack can be simplified to solving a
large system of equations involving the bits of the internal state and the outputs. While the
observations do not necessarily need to be contiguous, it is more difficult to perform this
attack in practice if it is not known how many shuffles occurred between the last observation
and the current observation.

4 Proposed Scheme

We propose a scheme that satisfies the criterion of provable fairness and is relatively easy
to implement for a variety of game types. First, we will describe our protocol which builds
on working primitives from the existing schemes. Next, we will prove that our scheme
satisfies the strict definition of provable fairness and describe some of the properties that it
has. Finally, we will demonstrate how to apply the scheme to different game types.

The main idea behind the proposed scheme is that all game types which we have surveyed
can be reduced to a set of finite game states, each of which occur with equal probability. Most
game types compute expectations of house edge based on a uniform distribution of the finite
game states. An ideal scheme would be able to choose a state uniformly at random from the
set of possible states for a game, which would prevent bias towards either party.

Let 𝑆 be the set of all game states. Our protocol requires that the client and server seed spaces
be the set of integers such that 𝜎𝐴 = 𝜎𝐵 = [0, |𝑆|). For a given seed pair 𝑠𝐴 ∈ 𝜎𝐴 and 𝑠𝐵 ∈ 𝜎𝐵,

the game function is defined as 𝐺(𝑠𝐴, 𝑠𝐵) = 𝑀((𝑠𝐴 + 𝑠𝐵) mod |𝑆|) where 𝑀 is the public

mapping function for a given game type. Note that 𝑀 should be a bijective mapping between
[0, |𝑆|) and the game states. This ensures that each integer input to 𝑀 corresponds to exactly
one game state.

It is recommended that the server commits using some randomness 𝑟 in addition to its seed.
The reason is that |𝑆| may not be very large, and thus committing using a deterministic hash
function would reveal the value of 𝑠𝐴. If 𝐻 is a secure hash function like SHA-512, committing
using 𝑝𝐴 = 𝐶(𝑠𝐴) = 𝐻(𝑠𝐴 || 𝑟) where |𝑟| ≥ 128 bits should provide sufficient security under
the random oracle model. To verify, the client would receive 𝑠𝐴 along with 𝑟 and verify that
𝑝𝐴 is the result of hashing the concatenation of 𝑠𝐴 and 𝑟. Furthermore, the client should check
that 𝐺(𝑠𝐴, 𝑠𝐵) is indeed the output of the game.

We will now prove that this scheme satisfies the criterion of provable fairness. Assume that
the client chooses 𝑠𝐵 uniformly from 𝜎𝐵. For any fixed seed 𝑠𝐴, (𝑠𝐴 + 𝑠𝐵) mod |𝑆| is uniformly
distributed in the domain of 𝑀. This implies that the outputs are also uniformly distributed
in 𝑆 due to the bijective property of 𝑀. Thus, it is impossible for the server to select a single
adversarial seed that performs better than the expected house edge. A similar argument can
be applied when 𝑠𝐴 is chosen uniformly from 𝜎𝐴 using symmetry.

4.1 Coin Games

For coin games, the mapping function is relatively trivial because there are only two states:
heads and tails. The seed space is 𝑆 = {0,1}, where 0 corresponds to tails and 1 corresponds
to heads. A satisfying mapping function would be 𝑀(𝑠) = 𝑠.

4.2 Dice Games

A satisfying mapping for dice games is also simple – the states of rolling 1 through 6 can be
mapped directly to the numbers 1 through 6. In other words, 𝑆 = {1,2,3,4,5,6}. A provably
fair game between the client and server would use the mapping function 𝑀(𝑠) = 𝑠 + 1.

Example Game

Server: Chooses 𝑠𝐴 = 4. Sends client 𝑝𝐴 = 𝐻(4 || 𝑟) where 𝑟 is some randomness.
Client: Chooses 𝑠𝐵 = 5. Sends 𝑠𝐵 to server.
Server: Computes result from the game function as 𝐺((4 + 5) mod 6) = 𝑀(3) = 4 to decide

if client won. Note that the criteria of winning are determined by the specific game type. The
server then sends the client 𝑠𝐴 along with 𝑟.
Client: Verifies that 𝑝𝐴 matches. Verifies that the output of the game matches.

4.3 Card Games

For card games, we would like a mapping function that converts a number from 0 to 𝑛! − 1
to an ordering of the 𝑛 cards. We will call the number corresponding to a single permutation
as the “permutation number” of the deck.

Define an ordering of cards from 1 through 𝑛. This ordering should be public and fixed
between shuffles. First, working backwards, note that we can place the cards down starting
from card number 1. The first card has exactly 1 position that it can go in. Then we can place
down card number 2. Card 2 has two possible positions: left or right of card 1. We name these
positions “position 0” and “position 1”. For each arrangement of card 1 and card 2, card 3
will have 3 positions: before card 1, between card 1 and card 2, or after card 2. These three
positions are labelled 0, 1, and 2 respectively. Continuing like this, for the 𝑚-th card, there
are 𝑚 positions labelled 0 through 𝑚 − 1.

If we draw the corresponding tree of outcomes, we will obtain a diagram like the one shown
below. The diagram shows all possible shuffles for 4 cards. The permutations of cards are
labelled 0 through 4! − 1.

The red arrows 1, 1, 2 refer to the fact that card 2 was inserted in position 1, card 3 in position
1, and card 4 in position 2.

More specifically, we see this placement in the following figure.

Thus, we have a mapping from each permutation of cards to a permutation number. This
mapping is clearly 1 to 1 because each permutation is accounted for in the tree by looking at
all possible placements of the card at each step.

However, when we define the mapping function, we are performing the reverse computation
of converting a permutation number to a card ordering. Given a permutation number such
as permutation 18, we want to reverse-engineer the placement of each card. Starting from
card 4 (still using the example of 𝑛 = 4 cards), the last card must have been in position
18 (mod 4) = 2. Next, we divide by 4 to find which node in the second to last layer of the tree

the permutation came from. Since ⌊18 4⁄ ⌋ = 4 and 4 (mod 3) = 1, we know card 3 must have
been in position 1. Similarly, divide again and use (mod 2) to find that card 2 should have
been placed in position 1.

Below is a Python function that converts any permutation number combo_num to a physical
ordering of the deck with cards numbered 1 through num_cards.

1. def map(num_cards, combo_num):
2. cur_num = combo_num
3. positions = []
4. cards = []
5.
6. for card in range(num_cards, 1, -1):
7. position = cur_num % card
8. positions = [position] + positions
9. cur_num = cur_num//card
10.
11. cards = [1]
12.
13. for card in range(2, num_cards + 1):
14. position = positions[card-2]
15. cards = cards[0:position] + [card] + cards[position:]
16.
17. return cards

Since we now have a 1 to 1 mapping for permutations (shuffles) of 𝑛 cards to numbers 0
through 𝑛! − 1, we can play any game with an arbitrary number of cards. In the example of a
52-card game, there are 52! − 1 outcomes. Since log2 52! < 226, we can represent all the
states (i.e. all the shuffles of the deck) in 226 bits. This is a feasible amount of entropy to
generate for each game, since many existing schemes use around 128 to 1024 bits of entropy
per game.

Defining the mapping function this way yields several benefits. First, the sizes of seed spaces
are not skewed, so all card games where expected house edges are computed based on a
uniform distribution over all shuffles will satisfy the criteria of provable fairness if one party
chooses their seed uniformly at random. Second, it is possible under this mapping function
for all permutations of the deck to appear, unlike some existing schemes where it is harder
to prove that all permutations can occur with a given initial seed.

4.4 Slot Games

Slot games can also be transformed into a set of discrete states with uniform probability. Let
𝑛 be the number of reels and let 𝑏 be the number of states on each reel. There is a total of 𝑛𝑏
different states, each occurring with probability (𝑛𝑏)−1. We can imagine that 𝑏 is the base
and 𝑛 is the number of digits. Thus, the mapping function is simply performing a base
conversion from a base 10 number to an 𝑛-digit number in base 𝑏.

5 Conclusion

Through surveying a variety of different online gambling sites, we have determined a wide
range of potential vulnerabilities that can be exploited from the perspective of the client and
the server. Some of these vulnerabilities are easily patchable, while others represent deeper
flaws in the design of the provable fairness scheme. We proposed a stronger definition of
provable fairness and presented a generalized scheme that satisfies this definition. We also
showed how to extend this proposed scheme to a few common game types.

6 References

[1] https://news.bitcoin.com/bitcoin-gamblers-wagered-4-5-billion-btc-2014/
[2] https://www.gamesindustry.biz/articles/2018-04-17-loot-boxes-skins-gambling-to-hit-usd50-
billion-by-2022-report
[3] https://dicesites.com/provably-fair
[4] https://mysterybrand.net/en/provably-fair
[5] https://www.bitsler.com/en/provably-fair
[6] https://en.wikipedia.org/wiki/Length_extension_attack
[7] https://tools.ietf.org/html/rfc2104
[8] https://fair-dice.com/
[9] https://www.worldcat.org/title/art-of-computer-programming-volume-2-seminumerical-
algorithms/oclc/85975465
[10] https://bitcointalk.org/index.php?topic=1700680.0
[11] https://fortunejack.com/dice
[12] https://diceum.com/bet
[13] https://bitcointalk.org/index.php?topic=1494470.0
[14] https://jonasnick.github.io/blog/2015/07/08/exploiting-csgojackpots-weak-rng/
[15] https://cryptogambling.org/whitepapers/provably-fair-algorithms.pdf
[16] https://repl.it/@mysterybrand/provably-fair-check
[17] https://www.bitdice.me/help
[18] https://www.bgaming.com/provability_explained.html
[19] https://wizardofodds.com/games/blackjack/strategy/4-decks/
[20] https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1528&context=gradreports
[21] https://github.com/seblau/BlackJack-Simulator
[22] https://coinroyale.com/provablyfair
[23] https://blog.nitrogensports.eu/casino/was-your-blackjack-hand-provably-fair/
[24] https://know.bishopfox.com/blog/2014/08/untwisting-mersenne-twister-killed-prng
[25] https://github.com/fx5/not_random

7 Appendix

We show a few code fragments used in this report to construct theoretical attacks. The full
code is available at https://github.com/bobbyluig/provable-fairness.

https://news.bitcoin.com/bitcoin-gamblers-wagered-4-5-billion-btc-2014/
https://www.gamesindustry.biz/articles/2018-04-17-loot-boxes-skins-gambling-to-hit-usd50-billion-by-2022-report
https://www.gamesindustry.biz/articles/2018-04-17-loot-boxes-skins-gambling-to-hit-usd50-billion-by-2022-report
https://dicesites.com/provably-fair
https://mysterybrand.net/en/provably-fair
https://www.bitsler.com/en/provably-fair
https://en.wikipedia.org/wiki/Length_extension_attack
https://tools.ietf.org/html/rfc2104
https://fair-dice.com/
https://www.worldcat.org/title/art-of-computer-programming-volume-2-seminumerical-algorithms/oclc/85975465
https://www.worldcat.org/title/art-of-computer-programming-volume-2-seminumerical-algorithms/oclc/85975465
https://bitcointalk.org/index.php?topic=1700680.0
https://fortunejack.com/dice
https://diceum.com/bet
https://bitcointalk.org/index.php?topic=1494470.0
https://jonasnick.github.io/blog/2015/07/08/exploiting-csgojackpots-weak-rng/
https://cryptogambling.org/whitepapers/provably-fair-algorithms.pdf
https://repl.it/@mysterybrand/provably-fair-check
https://www.bitdice.me/help
https://www.bgaming.com/provability_explained.html
https://wizardofodds.com/games/blackjack/strategy/4-decks/
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1528&context=gradreports
https://github.com/seblau/BlackJack-Simulator
https://coinroyale.com/provablyfair
https://blog.nitrogensports.eu/casino/was-your-blackjack-hand-provably-fair/
https://know.bishopfox.com/blog/2014/08/untwisting-mersenne-twister-killed-prng
https://github.com/fx5/not_random
https://github.com/bobbyluig/provable-fairness

Code for computing Mersenne-based deck shuffles consistent with an initial described in
section 3.6 is shown below.

1. #include <algorithm>

2. #include <fstream>

3. #include <iostream>

4. #include <random>

5. #include <vector>

6.

7. int main() {

8. static const unsigned int kIndices = 52;

9.

10. std::mt19937 initial_mt(42);

11. std::vector<uint32_t> initial_indices(kIndices);

12. std::iota(initial_indices.begin(), initial_indices.end(), 0);

13. std::shuffle(initial_indices.begin(), initial_indices.end(), initial_mt);

14.

15. for (unsigned int &x : initial_indices)

16. std::cout << x << ',';

17. std::cout << std::endl;

18.

19. std::vector<uint32_t> indices(kIndices);

20. std::iota(indices.begin(), indices.end(), 0);;

21.

22. for (uint32_t i = 0;; i++) {

23. std::vector<uint32_t> indices_copy = indices;

24. std::mt19937 generator(i);

25. std::shuffle(indices_copy.begin(), indices_copy.end(), generator);

26.

27. if (std::equal(initial_indices.begin(), initial_indices.begin() + 4, indices_copy.begin())) {

28. std::cout << i << ":";

29. for (unsigned int &x : indices_copy)

30. std::cout << x << ',';

31. std::cout << std::endl;

32. }

33.

34. if (i == std::numeric_limits<uint32_t>::max()) {

35. break;

36. }

37. }

38. }

Code for selecting the best initial shuffle for a blackjack game described in section 3.5 is shown

below.

1. def exploit():

2. best_cards = None

3. best_value = float('inf')

4.

5. for _ in range(100):

6. game = Game()

7. deck = game.shoe.cards.copy()

8. shoe = game.shoe

9.

10. winnings = []

11. bets = []

12.

13. for i in range(SHOE_SIZE * 52):

14. cut_deck = deck[i:] + deck[:i]

15. shoe.cards = cut_deck

16. game = Game(shoe)

17. game.play_round()

18.

19. winnings.append(game.get_money())

20. bets.append(game.get_bet())

21.

22. loss = sum(winnings) / sum(bets)

23.

24. if loss < best_value:

25. best_value = loss

26. best_cards = deck

27.

28. return best_cards, best_value

