
Private Categorization

Jack Gurev, Aleksejs Popovs, Hannah Whisnant

May 15, 2019

Abstract

Budgeting apps are a useful tool for consumers, but also present a
significant security concern as they require users to share records of their
financial transactions with third parties so the Service Provider can cat-
egorize their expenses. One potential way to improve the security of
budgeting apps offering expense categorization is through Private Set In-
tersection. In this paper, we examine the applicability of Private Set
Intersection to the problem of expense categorization and implement a
number of optimizations suggested by Chen, Laine, and Rindal [CLR17]
in order to determine whether such a scheme would be practical. Our
implementation found a similar runtime to that described in [CLR17] for
unlabeled Private Set Intersection, and a significant slowdown for labeled
Private Set Intersection. While we find that current performance of our
protocol is not sufficient to provide a user of an expense categorization
service with real-time results, it is sufficient for use in an asynchronous
service with only a short delay between when the user submits their trans-
actions for categorization and when the results are available, and future
optimizations are likely to improve performance even further.

1 Motivating Problem: Expense Categorization

Budgeting apps are a useful tool that help customers track and manage their
own expenses across many different categories. These apps solve a problem that
many consumers face, where the record of each credit card transaction that ap-
pears on their account is an opaque string of characters that is not descriptive
of what the expense recorded actually was. Budgeting apps seek to categorize
an expense that appears on a transaction record more clearly—for example,
“NYSTA REBILL ACH ACH TRAN,” an obscure label used to describe high-
way tolls, may appear as “Travel,” allowing a consumer to understand where
their money is being spent and better manage their finances.

A wide variety of these apps are currently available to consumers, including
popular programs like Intuit Mint and PocketGuard. In all cases, these apps
require the user to agree to turn over financial data to the service provider in
order to analyze spending information in a way that is useful. This agreement
is often discouraged by banks and other financial institutions—TD Canada,

1

for example, states that they “do not endorse the use of aggregation services
due to the potential risk to personal information” [Cha18]. Sharing personal
financial information with a third-party service provides a potential avenue for
customer’s data to be breached by an attacker or misused by the service, and
most consumers have no way to verify their information will be secure.

Consumers of these services, however, do care about security—a signifi-
cant portion of the inquiries on Mint’s and PocketGuard’s Frequently Asked
Questions sections are related to the security of their product [Min19] [Sta19].
Banking data is often very personal and sensitive for individuals, so we were
motivated by the question: how can expense categorization in budgeting apps
be made more secure?

In order to address this, we have proposed a solution based on Private Set
Intersection (PSI), which would allow a user to provide a service with encrypted
transaction data, and allow the service to return the labeled intersection of the
user’s set with their own without revealing any additional data to either party.

2 Literature Review

2.1 Origins of Private Set Intersection

Proposals for PSI have existed for several decades, beginning with a proposal
in 1986 by C. Meadows that was fully described by Hoberman, Franklin, and
Hogg. These proposals were secure and correct—however, they were signifi-
cantly limited by their high computational costs, which increased dramatically
with the sizes of the two sets being compared [CLR17].

Over the next twenty years, there was significant research into finding more
and more efficient implementations of PSI that would be practically applicable
on a large scale. Many researchers forcused on implementations of Oblivious
Transfer, while others applied multi-party computation protocols like garbled
circuits, the user of non-colluding servers, or implementations of protocols based
on RSA accumulators [CLR17]. While these implementations demonstrated
significant gains in computational efficiency, these continued to be linear to the
size of each of the two sets being compared.

2.2 Unbalanced Private Set Intersection

In the case of expense categorization, it is overwhelmingly likely that the set
belonging to the Service Provider (which will include the transaction label for
every potential transaction any consumer can undertake) will be very signifi-
cantly larger than the set belonging to the user (which includes only the trans-
action labels for transactions that that specific consumer has undertaken). This
presents a similar set of challenges to a previously studied application: that of
private contact discovery. A secure messaging service like WhatsApp or Signal
might want to allow users to discover which of their existing contacts use their
secure service, without allowing the service itself access to all of their contact

2

information. A user will have far fewer contacts than the app has users, leading
to an unbalanced PSI problem as first proposed by Moxie Marlinspike [Mar14].

A potential solution to this problem of unbalanced PSI was proposed by
Chen, Laine, and Rindal in 2014. Rather than relying on Oblivious Transfer
or multi-party computation, this solution takes advantage of a number of de-
velopments in fully homomorphic encryption. When optimized, this solution
is still linear to the size of the smaller set, but it is logarithmic to the size of
the larger set, allowing significant gains in performance in cases like expense
categorization where one set is significantly larger than the other [CLR17]

2.3 Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) is not a new concept, first described in
1978 by Rivest, Adleman, Dertouzos. However, no implementation of FHE
was constructed until 2009, by Craig Gentry. The development of FHE closely
mirrored the development of PSI—while early implementations were too costly
to be effective for practical implementation, a number of researchers have offered
continuing improvements in recent years that bring FHE closer and closer to
applicable [CLR17].

Currently, a number of powerful tools are available to those who wish to
leverage FHE for secure communication and computation. With the primary
emphasis of this project on the implementation and optimization of PSI, we
have chosen to use Microsoft SEAL, a preexisting open-source homomorphic
encryption library [SEA19].

2.4 Application to Expense Categorization

In order to apply PSI to expense categorization, we have attempted to imple-
ment the basic protocols and optimizations in unbalanced PSI as described by
Chen, Laine, and Rindal and compare the performance of the implementation to
that described in their paper. We do not have access to the datasets that com-
monly used budgeting apps use to categorize expenses, as these apps maintain
the privacy of their data in order to gain a competitive advantage. However,
we present a proof of concept that demonstrates that Chen, Lain, and Rindal’s
optimized and labeled implementation of PSI, using Microsoft SEAL to provide
FHE, would be practically applicable to the problem of expense categorization.

3 Formal Problem: Private Set Intersection

Expense categorization can be thought of as, for some set of categories C, for
every c ∈ C informing the user which of their transactions are in category c.
We can imagine the Service Provider has a large list of merchants for each of
these categories, and so for each such category must compute the intersection
of the user’s list of transactions and the list of merchants for that category. In
this simplest case of a single category of merchants, we arrive at the problem

3

of Private Set Intersection, or PSI, which for our purposes we will model as a
Service Provider SP with a set S, of size NS := |S| along with a user who has
a smaller set U of size NU . A private set intersection algorithm should satisfy
the following three guarantees:

1. The user should learn the intersection U ∩ S.

2. The user should not learn anything else about the elements of S.

3. The Service Provider should not learn anything about the elements of U .

In [CLR17], they describe a basic algorithm for PSI using homomorphic
encryption, and then a series of improvements to the basic algorithm using
several techniques, which decrease this communication complexity as well as
the circuit depth of the required operations on encrypted data. This circuit
depth is the most important factor in the runtime of the algorithm.

We will describe the basic algorithm and its improvements, and then our
own implementation and testing.

4 Naive Private Set Intersection Using Homo-
morphic Encryption

The User chooses a public/secret key pair (pk, sk) for a Fully Homomorphic
Encryption scheme. They send pk to the Service Provider, as well as ciphertexts
(c1, . . . , cNU

for each element of U .
For each i, the Service Provider chooses a random non-zero plaintext ri, and

homomorphically computes

di := ri
∏
s∈S

(ci − s)

They then return these ciphertexts (d1, . . . , dNU
to the user. The user de-

crypts each ciphertext, and outputs the set of all i for which di decrypts to
0.

We can verify that this scheme satisfies all of the security guarantees for

PSI: the product ri
∏
s∈S

(ci − S) is 0 if ci ∈ S and a random plaintext otherwise,

so the user correctly learns the intersection and nothing else about the Service
Provider’s set S. Meanwhile, by the security guarantees of FHE, the Service
Provider does not learn anything about U from the encryption of its elements.

5 Optimization of Private Set Intersection

The Naive PSI algorithm requires O(NUNS) homomorphic operations to be
performed by the Service Provider. In addition, a circuit depth of O(log(NS)) is
required. We will now go through techniques which reduce this to O(NU logNS)
homomorphic operations, as well as decrease the circuit depth.

4

5.1 Batching

Batching is a method of decreasing the amount of communication required be-
tween the User and Service Provider, as well as the computation time, by group-
ing the input items together.

Specifically the user divides U into vectors of length n, encrypts these vec-
tors, and sends the NU/n ciphertexts ci to the Service Provider.

For each i, the Service Provider then samples a vector ri = (ri1, . . . , rin) of
uniformly random non-zero elements, computes

di = ri
∏
s∈S

(ci − s)

and sends them back to the user.
Because the Service Provider can operate on n items simultaneously, we have

an n-fold improvement in both communication and computation.

5.2 Hashing

Another improvement comes from hashing. Intuitively, instead of comparing
every pair (u, s) to compute the intersection, first hash all of the elements of U
and S into buckets B. Then we only have to check whether elements of U and
S which hash to the same bucket are equal.

More carefully, suppose first that we use a single random hash function H
into NU buckets B. The user hashes each element of U , encrypts these hashes
into ciphertexts ci, then sends {(ci, bi)} to the Service Provider.

The maximum load will on expectation be O(logNU).
As is, the second security assumption will be broken: the service provider

will learn how many elements of U hash to each bucket. To fix this, the user
must fill all buckets up to the maximum load, which requires on expectation
O(NU logNU) ciphertexts to be sent by the user.

To decrease the maximum load, we can use Cuckoo hashing. The user
chooses h > 1 random hash functions into (1 + ε)NU buckets B. When an
element of NU hashes into a bucket which is already full, they switch the ele-
ment it is colliding with to its next hash function.

Cuckoo hashing requires the Service Provider to hash all of their elements us-
ing all h of the hash functions, but it still provides a large speedup by decreasing
the number of multiplications which need to be done homomorphically.

5.3 Windowing

The third optimization from Chen, Laine, and Rindal that we have implemented
is windowing. When the Service Provider computes the value of di for a given
value ci, we can see that we must compute this value as:

ri
∏
s∈S

(ci − s) = rcNs + raNs−1c
Ns−1 + ...+ ra0

5

However, if the user, whose computational requirements are relatively small,
instead sends the Service provider additional powers of c, the Service Provider
has many fewer necessary computations. The computations user sends take the
form ci·2

j

, where, given a window size of l bits, 0 ≤ i ≤ 2l − 1 and 1 ≤ j ≤
blog2(Ns)/lc.

5.3.1 Effect of Windowing on Computation

Windowing results in gains in computational efficiency. Without windowing,
the Service Provider must compute at most the product rcNs , which requires a
circuit of depth dlog2(Ns + 1)e. However, with windowing, the Service Provider
needs to compute only the product of blog2(Ns)/l+ 1)c terms at most, which is
equivalent to a circuit depth of dlog2(blog2(Ns)/l+ 1)c)e The true circuit depth
depending on the number of encryptions that the user sends.

5.3.2 Effect of Windowing on Communication

Unlike batching and hashing, windowing increases the costs of communication.
While the communication from Service Provider to user remains unchanged, in
order to send powers of c to the Service Provider, the user’s communication to
that Service Provider must increase by a factor of (2l − 1) · (blog2(Nx)/lc+ 1).

This is equivalent to the total number of encrypted values of ci·2
j

.

5.4 Partitioning

The fourth optimization from Chen, Laine, and Rindal that we have imple-
mented is partitioning. Partitioning occurs when the Service Provider divides
its set into α subsets of roughly equal size. This partitioning should be uniformly
random in order to preserve security.

5.4.1 Effect of Partitioning of Computation

When combined with windowing, partitioning has the further effect of reducing
the number of powers of c that either the user of the Service Provider must
compute. Given a partition of size k, this is a reduction from cNs to cNs/k.
These computations can then be reused for each of the k-sized subsets.

5.4.2 Effect of Partitioning on Communication

Like windowing, partitioning increases the complexity of communication. In this
case, the communication from the Service Provider back to the user increases
by a factor of k, since the Service Provider must return whether or not each
encrypted c intersects with each of the k-sized subsets.

6

5.5 Labeled Private Set Intersection

An additional challenge of the expense categorization problem is that its solution
requires not only the indication that the user’s transaction label exists in the
Service Provider’s set, but additionally the return of information regarding what
category label the Service Provider has assigned to that transaction label (i.e.,
what category the expense falls into). The solution to this problem lies in labeled
PSI.

Labeled PSI was proposed by Chen, Huang, Laine, and Rindal in 2018
[CHLR18]. We have described and implemented labeled PSI is compatible with
PSI as described in [CLR17], setting aside further optimizations that are possi-
ble given fundamental changes to the PSI implementation.

5.5.1 Labeled Private Set Intersection Protocol

We construct a scheme where the Service Provider returns the pair (0, li) where
li is the label for a given element if the user’s element exists in the Service
Provider’s set, and returns a pair of random elements of the field otherwise. First
we create a polynomial H such that H(ci) = li for all i. The Service Provider
returns the pair (di, r · di + H(ci)) to the user. di is calculated identically in
labeled PSI as it is in unlabeled PSI. In the case that the value is in the Service
Provider’s set, homomorphic encryption allows the user to view the label if the
decryption of di = 0, and the multiplication by a uniformly randomly chosen
non-zero element r obfuscates the Service Provider’s labels in cases where the
user’s element does not exist in the Service Provider’s set.

5.5.2 Computational Complexity

Labeled PSI introduces some amount of additional computational complexity.
Much of this occurs offline, as the Service Provider must calculate the appro-
priate polynomial H. Additionally, during the categorization process there is
some amount of additional computational complexity, as the Service Provider
must homomorphically evaluate the polynomial it has interpolated. According
to [], this difference is equivalent to O(NSNU

m2 · l/σ), where m is the number of
bins determined in hashing, l is the label length, and σ is the element length.

5.5.3 Complexity of Communication

Labeled PSI also increases the complexity of communication, as the Service
Provider must return both the label and the value di. This results in additional
complexity of O(NU · l), where l is the label length.

6 Networking

While most of the optimizations of PSI that we have implemented as a proof of
concept for expense categorization are intended to optimize the computational

7

efficiency of the protocol, communication costs are also a key component of
evaluating PSI for usability. As such, we have designed up a very basic network
protocol and implemented a server and a client in C++ in order to ensure
that communication between user and Service Provider will not be prohibitively
expensive. Although the use of a single client is not necessarily reflective of the
real network environment over which a potential budgeting app would be run,
our mock network application serves as a further proof of concept for an app
that would apply PSI for expense categorization.

7 Implementation results

We have implemented the [CLR17] PSI algorithm, along with the [CHLR18]
trick for Labeled PSI and our networked protocol for Private Categorization, in
a C++ application, using the Microsoft SEAL library [SEA19] for an implemen-
tation of a leveled fully homomorphic encryption scheme. The implementation
is available under a free software license at https://github.com/popoffka/

6857-private-categorization. In the rest of this section, we evaluate the
performance of our implementation and the practicality of using it to provide a
Private Categorization-based service online.

7.1 Performance comparison with [CLR17]

In [CLR17], the authors report on the performance of their own implemen-
tation, which uses an older version of the SEAL library and is not publicly
available. We have compared the performance of our implementation against
the reported numbers in [CLR17], and the results of the comparison are sum-
marized in Table 1. In the same table, we also demonstrate the performance of
our Labeled PSI implementation, in order to analyze the cost of the [CHLR18]
trick. All times are averages of 10 runs.

Three limitations apply to this comparison:

• our implementation is single-threaded, so we also only list single-thread
performance results for [CLR17],

• our implementation does not separate the sender’s computations into a
pre-processing and online phase, so we list total sender time for both
implementations, and

• the results in [CLR17] were obtained on a powerful server machine (“two
18-core Intel Xeon CPU E5-2699 v3 @ 2.3 GHz and 256GB of RAM”),
whereas our results were obtained on a commodity laptop (dual-core Intel
Core i3-6100U @ 2.3 GHz and 8GB of RAM).

Nevertheless, we observe that the performance of our implementation is on
par with that of [CLR17]. We believe that the difference in benchmarking hard-
ware is mostly insignificant because we are only comparing single-thread perfor-
mance, while the machines primarily differ on the number of threads they can

8

https://github.com/popoffka/6857-private-categorization
https://github.com/popoffka/6857-private-categorization

NS NU n α l Implementation Sender Rec. enc. Rec. dec.

216

5535 8192 8 3
[CLR17] 1.3 0.3 0.1
Ours 1.1 0.1 0.1
Ours, labeled 2.0 0.1 0.1

11041 16384 8 2
[CLR17] 2.5 0.3 0.3
Ours 3.5 0.1 0.1
Ours, labeled 5.2 0.1 0.2

220

5535 8192 64 2
[CLR17] 7.8 0.2 1.0
Ours 7.4 0.1 0.2
Ours, labeled 21.7 0.1 0.4

11041 16384 32 3
[CLR17] 10.9 0.7 1.3
Ours 13.5 0.3 0.4
Ours, labeled 32.3 0.3 0.8

224

5535 8192 256 1
[CLR17] 100.1 0.2 4.9
Ours 103.4 2.1 0.8
Ours, labeled 682.9 2.1 1.5

11041 16384 128 2
[CLR17] 109.8 0.5 5.1
Ours 158.4 2.2 1.5
Ours, labeled 758.2 2.2 3.0

Table 1: Running time in seconds for multiple implementations of PSI and La-
beled PSI. “Rec. enc.” denotes the time spent by the user encrypting their in-
puts, “Sender” denotes the time spent by the service provider computing on the
encrypted inputs, and “Rec. dec.” denotes the time spend by the user decrypt-
ing the results of the computation. σ = 32, h = 3. Optimization parameters are
taken from [CLR17].

run (and also on memory, but the limited amount of memory available on our
testing machine is sufficient for the computations tested). We expect that par-
allelizing our implementation and separating the sender’s pre-processing phase
should be relatively straightforward, and that we would again see performance
similar to that of [CLR17]. Therefore, we believe that our results accurately
represent the real-world performance of the [CLR17] scheme.

As for the [CHLR18] trick for Labeled PSI, its effects on the runtime of the
receiver are completely predictable: no effect on encryption times and double
the decryption times, since the encryption process is exactly the same and the
decryption process involves decrypting exactly twice as many ciphertexts. The
sender runtime is affected in a more complicated way, and the slowdown ranges
from 1.5x up to 6.6x for the parameters tested. We believe that this is because
the polynomial interpolation procedure involved in Labeled PSI is slower than
the one involved in regular PSI, so cases where the sender’s runtime is dominated
by polynomial interpolations are affected more than those where it is dominated
by homomorphic multiplications. We conjecture that increasing l should lead
to better performance for Labeled PSI in these cases, by decreasing the degrees
of the polynomials being interpolated.

9

NS NU n α l Sender Rec. enc. Rec. dec.
220

100

8192 256 2 22.5 0.1 1.5
221 8192 512 2 138.8 0.1 3.1
222 8192 1024 1 172.7 0.1 6.3
223 8192 2048 1 227.9 0.1 12.3

Table 2: Running time in seconds for our Labeled PSI implementation. σ =
46, h = 3.

7.2 Application to real-world categorization problems

We are now going to consider an application of our implementation of the La-
beled PSI protocol to our real-world motivating problem, that of categorizing
credit card transactions by expense type.

According to [RC13], there are on the order of 223 credit card merchants
in the United States. By the birthday paradox, this means that, if the parties
are going to use hashing to obtain short binary strings corresponding to the
merchant identifier strings found on credit card statements, the output length
of the hash must be at least 46 bits to keep the number of collisions low.

Therefore, we are considering an instance of Labeled PSI with item length
σ ≥ 46. [CLR17] warn that the encryption parameters have to be substantially
increased to accommodate longer items, leading to “a large negative impact on
performance.” We are now going to quantify this impact.

Assuming that a user uses the categorization service once per month, after
receiving their statement from their bank, we expect the number of transac-
tions that they need to categorize to be on the order of 100, based on personal
experience. However, notice that the exact size of the receiver’s set NU does
not directly affect the performance of the protocol, but rather the number of
buckets that the set is cuckoo hashed into does. Because of batching, there is
no reason to hash into fewer buckets than n, the number of slots in a single
ciphertext, so, as long as n ≥ 8192, we should expect to see similar performance
for values of NU of up to at least 4096.

It is plausible that a version of the Pareto principle (80/20 rule) applies
to credit card merchants, that is, that roughly 20% of the merchants generate
around 80% of all transactions. Then a transaction categorizing service doesn’t
need to know about every single merchant to be useful to most users most of
the time. Therefore we consider different possible sizes of the server’s set from
220 up to 223.

In Table 2, we have summarized the performance of our implementation of
Labeled PSI for σ = 46, NU = 100 and various values of NS from 220 to 223,
using optimization parameters that we have found to yield the best performance.

As we can see, the performance is not sufficient for a real-time application,
as checking the user’s 100 transactions against a list of even just 221 merchants
(around a quarter of the total number of merchants) requires more than two
minutes of computation on the sender’s side. However, the protocol could still
plausibly be used in an asynchronous service, where the user uploads their

10

encrypted transactions to the service and later receives a push notification when
the processed results are available. Parallelization could also be used to decrease
wait times somewhat.

Given that each user would only submit their transactions once per month,
the per-user processing cost is not prohibitive—228 seconds of CPU time per
month is equivalent to serving about 150–380 average web requests per day1,
which is a manageable number of requests for a dynamic application to receive
from a user.

8 Conclusion

In this paper, we have considered one possible practical application of Private
Set Intersection protocols, and, after analyzing a particular implementation,
found that the performance, while not real-time, is nevertheless sufficient to
enable practical use. We believe that PSI-based protocols are a powerful build-
ing block for services that respect the users’ privacy while not requiring service
providers to make their datasets public, and we would like to see them adopted
by commercial service providers.

We have only considered instances of Private Categorization where catego-
rization is performed by exact matching against a labeled list of known items.
In many applications, it might be useful to also allow fuzzy matching, substring
matching, or other matching methods. More research is required to determine
whether modifications of PSI-based protocols or another secure multiparty com-
putation protocol can be used to provide Private Categorization with more so-
phisticated matching with performance suitable for real-world applications.

References

[Cha18] Karoun Chahinian. Are budgeting apps like Mint safe to use?
MoneySense, June 2018. https://www.moneysense.ca/save/

budgeting/mint-budgeting-app-safe/.

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. La-
beled PSI from Fully Homomorphic Encryption with Malicious Se-
curity. Cryptology ePrint Archive, Report 2018/787, 2018. https:

//eprint.iacr.org/2018/787.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast Private Set Inter-
section from Homomorphic Encryption. Cryptology ePrint Archive,
Report 2017/299, 2017. https://eprint.iacr.org/2017/299.

1Assuming it takes 20 to 50 milliseconds to serve a web request. Google recommends that
servers take at most 200 ms to serve a request [Goo19], so we assume that 10%–25% of that
is a reasonable conservative average.

11

https://www.moneysense.ca/save/budgeting/mint-budgeting-app-safe/
https://www.moneysense.ca/save/budgeting/mint-budgeting-app-safe/
https://eprint.iacr.org/2018/787
https://eprint.iacr.org/2018/787
https://eprint.iacr.org/2017/299

[Goo19] Google. PageSpeed Insights: Improve Server Response Time.
February 2019. https://developers.google.com/speed/docs/

insights/Server.

[Mar14] Moxie Marlinspike. The difficulty of private contact discovery. Whis-
per Systems, January 2014. https://whispersystems.org/blog/

contact-discovery/.

[Min19] Intuit Mint. How to protect your Mint account. MintHelp, 2019.
https://help.mint.com/Mint-Account-Management/888963021/

How-to-protect-your-Mint-account.htm.

[RC13] Brian Roemmele and David Charlot. How many payment card mer-
chants are in the US? Quora, January 2013. https://www.quora.

com/How-many-payment-card-merchants-are-in-the-US.

[SEA19] Microsoft SEAL (release 3.2). https://github.com/Microsoft/

SEAL, February 2019. Microsoft Research, Redmond, WA.

[Sta19] PocketGuard Stan. Is it secure to link my accounts? Pocket-
Guard, April 2019. https://help.pocketguard.com/hc/en-us/

articles/360002167020-Is-it-secure-to-link-my-accounts-.

12

https://developers.google.com/speed/docs/insights/Server
https://developers.google.com/speed/docs/insights/Server
https://whispersystems.org/blog/contact-discovery/
https://whispersystems.org/blog/contact-discovery/
https://help.mint.com/Mint-Account-Management/888963021/How-to-protect-your-Mint-account.htm
https://help.mint.com/Mint-Account-Management/888963021/How-to-protect-your-Mint-account.htm
https://www.quora.com/How-many-payment-card-merchants-are-in-the-US
https://www.quora.com/How-many-payment-card-merchants-are-in-the-US
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://help.pocketguard.com/hc/en-us/articles/360002167020-Is-it-secure-to-link-my-accounts-
https://help.pocketguard.com/hc/en-us/articles/360002167020-Is-it-secure-to-link-my-accounts-

	Motivating Problem: Expense Categorization
	Literature Review
	Origins of Private Set Intersection
	Unbalanced Private Set Intersection
	Fully Homomorphic Encryption
	Application to Expense Categorization

	Formal Problem: Private Set Intersection
	Naive Private Set Intersection Using Homomorphic Encryption
	Optimization of Private Set Intersection
	Batching
	Hashing
	Windowing
	Effect of Windowing on Computation
	Effect of Windowing on Communication

	Partitioning
	Effect of Partitioning of Computation
	Effect of Partitioning on Communication

	Labeled Private Set Intersection
	Labeled Private Set Intersection Protocol
	Computational Complexity
	Complexity of Communication

	Networking
	Implementation results
	Performance comparison with CLR17
	Application to real-world categorization problems

	Conclusion

