
CRYPTOVOTE, 6.857 FINAL PROJECT, SPRING 2019 1

Cryptovote
Nicholas Boucher, Pasapol Saowakon, Kyle Swanson, Luka Govedič

Abstract—Ranked choice voting is a popular alternative to
single choice voting as it represents a more equitable social
choice function; voters can vote for particularly popular or
unpopular candidates without fear of their vote going to waste.
However, as in all election schemes, it is crucial that the election is
implemented by a system that is secure, confidential, fair, and free
of coercion. In this paper, we contribute an open-source Python
implementation of the Shuffle-Sum protocol from [1], which
securely tallies encrypted votes in a single transferable vote (STV)
ranked choice election. For the underlying cryptography for
Shuffle-Sum, we implemented the Damgård-Jurik cryptosystem
[2], which is a threshold cryptosystem that enables the distribu-
tion of trust among multiple election authorities. Additionally,
we created a website through which election authorities can
easily and securely run an STV election using Shuffle-Sum. We
have also profiled our implementation of Shuffle-Sum on real
election data from the November 2016 San Francisco Board of
Supervisors election, and we investigated the impact of using
different levels of encryption and different numbers of ballots on
the speed of our implementation.

Index Terms—Ranked choice voting, homomorphic encryption.

I. INTRODUCTION

ELECTRONIC VOTING (e-voting) is voting that uses
electronic means to either aid or enable casting and

counting votes [3]. It is much more efficient than traditional
voting in many ways. For instance, electronic voting does not
require physical polling stations, since it takes place online.
Therefore, electronic voting eliminates the significant need
not only for human resources but also for physical resources
such as trees. Moreover, electronic voting likely boosts voter
turnout, as votes can be cast anywhere, offering unparalleled
flexibility to voters.

While the idea of electronic voting sounds appealing, there
have been criticisms of its security. For example, there must be
a mechanism to ensure that all votes are only cast by eligible
voters, each casting a vote no more than once. At the same
time, the voters should not be identifiable with the votes they
cast. Ideally, the voters should also be able to verify that their
votes have been counted, yet there should be no receipt so as
to prevent coercion. And very importantly, an adversary must
not be able to tamper with the outcome.

Electronic voting has garnered much attention from re-
searchers, as evident from the recent progress in the field
[4]–[6]. However, most prior work has focused on encryption
for first-past-the-post voting [7], in which every voter votes
for a single candidate and the candidate with the most votes
wins. Although first-past-the-post is commonly used both in
the United States and abroad, some communities have shifted
to ranked choice voting systems since they represent a more
equitable voting mechanism. One such system in particular,
single transferable vote (STV) [8], is designed to overcome the

limitations of first-past-the-post voting, where votes for par-
ticularly popular or unpopular candidates have little influence
on the outcome of the election. In STV elections, votes for
candidates who receive more than the required quota of votes
are reweighted and redistributed to the voter’s next preference
based on the number of excess votes for their first-choice
candidate. Additionally, candidates who receive very few votes
are eliminated from the election, and the full weight of the vote
is redistributed to the voter’s next preference, meaning that no
votes are wasted by voting for candidates who are unlikely
to win. This also circumvents the “spoiler effect”, where a
3rd party candidate draws enough votes away from one of the
two major party candidates to flip the election [9]1. For these
reasons, the STV election system has been adopted by cities
and nations such as Cambridge, Massachusetts; San Francisco,
California; and Australia.

Due to the rising popularity of STV, Benaloh et al. designed
an encrypted, coercion-resistant, verifiable protocol for tallying
votes in an STV election [1]. Their protocol, called Shuffle-
Sum, cycles between a variety of encrypted ballot forms
to perform the reweighting, redistribution, and elimination
operations of an STV election. Furthermore, it leverages an
additively homomorphic encryption scheme to make tallying
of encrypted votes possible. The encryption scheme is also
designed to be a threshold cryptosystem, meaning that the
private key used for decryption is shared among a number
of election authorities. The threshold for decryption can be
chosen so that as long as at least one of those authorities is
honest, decryption of individual votes is not possible and the
integrity of the election is preserved.

Despite the excellent design of the Shuffle-Sum protocol,
we were unable to find a publicly available implementation
of Shuffle-Sum or of any algorithm for tallying an encrypted
STV election. Thus, our goal was to build a working, easy-
to-use, open-source implementation of Shuffle-Sum. To this
end, we implemented Shuffle-Sum in Python with an easily
accessible web interface that allows users to create, administer,
and vote in STV elections. We also implemented the Damgård-
Jurik cryptosystem to provide the underlying cryptography
for Shuffle-Sum. Our web interface is available at https:
//cryptovote.ml and our source code is available for audit on
GitHub at https://github.com/cryptovoting.

II. DAMGÅRD-JURIK CRYPTOSYSTEM

A. Overview

The Damgård-Jurik cryptosystem [2] is a generalization
of Paillier’s public key cryptosystem [11]. As with Paillier’s

1In fact, some have claimed that 3rd party candidates Gary Johnson and
Jill Stein may have drawn enough votes from Hillary Clinton in the 2016 US
presidential election to help elect Donald Trump [10].

https://cryptovote.ml
https://cryptovote.ml
https://github.com/cryptovoting


CRYPTOVOTE, 6.857 FINAL PROJECT, SPRING 2019 2

cryptosystem, the security of Damgård-Jurik is due to the
difficulty of factoring an RSA modulus n = pq where p and q
are large primes. However, while Paillier operates in the group
Z∗n2 with plaintexts living in Zn, Damgård-Jurik operates in
the group Z∗ns+1 with plaintexts in Zns for any s > 0. This
makes it possible for Damgård-Jurik to encrypt and decrypt
large plaintexts without changing the size of the underlying
keys.

B. Applicability to Voting

Damgård-Jurik is particularly applicable to voting systems
for two reasons.

1) Additively Homomorphic: Like Paillier encryption,
Damgård-Jurik is additively homomorphic, meaning it is pos-
sible to combine ciphertexts in such a way as to obtain
an encryption of the sum of the corresponding plaintexts.
This is ideal for tallying encrypted votes because it means
that individual votes never need to be decrypted; instead,
the encrypted votes can be added directly and only the sum
needs to be decrypted. Besides enabling addition of encrypted
numbers, Damgård-Jurik’s homomorphic property also means
that it is also possible to combine an encrypted number with
an unencrypted scalar in such a way as to obtain the product of
the corresponding plaintext and the scalar. This is necessary for
tallying an STV election because votes need to be multiplied
by an (unencrypted) weight when a candidate is elected and
his or her excess votes need to be redistributed.

2) Threshold Decryption: The second feature of Damgård-
Jurik that makes it useful for voting is that it can be structured
as a threshold cryptosystem. In a threshold cryptosystem, there
is a single public key as usual, but the private key is split
up and shared among a number of authorities. The shares
are constructed so that decryption is only possible with at
least w shares, where w is a threshold decided during key
generation. The distributed nature of the private key is useful
in an election because it means that as long as the number
of corrupt election authorities is less than the threshold, the
confidentiality of individual votes is preserved. This makes the
election robust to as many as w − 1 corrupt authorities. If w
is chosen to be w = l, then the election is robust as long as
at least one authority is honest.

In the next few sections, we will describe the technical
details of the threshold variant of the Damgård-Jurik cryp-
tosystem that enable these two features.

C. Key Generation

Key generation begins by finding two safe primes p = 2p′+
1 and q = 2q′ + 1, where p′ and q′ are distinct, large primes.
Then, we define n = pq and m = p′q′. We choose an s > 0,
which controls the size of the plaintext space Zns . The public
key is the pair (n, s).

Next, we use the Chinese remainder theorem to select
a secret key d such that d satisfies d = 0 mod m and
d = 1 mod ns. We then use Shamir’s secret sharing [12]
to split the secret key into l shares in such a way that at
least w of those shares are required to reconstruct the secret
key. This is accomplished by constructing the polynomial

f(X) =
∑w−1
i=1 aiX

i mod nsm, where ai (for 0 < i < w)
are random values in {0, . . . , nsm − 1} and a0 = d is the
secret being shared. The ith authority is given the secret key
share si = f(i) for 1 ≤ i ≤ l.

D. Encryption

To encrypt a message M , a random r ∈ Z∗n is chosen and
the ciphertext is computed as c = (n+ 1)Mrn

s

mod ns+1.

E. Homomorphic Operations

Next, we will demonstrate the operations that make the
above encryption scheme additively homomorphic.

1) Adding Encrypted Numbers: First, we will show how
to combine two encrypted numbers to obtain the sum of the
associated plaintexts. Consider that we have two plaintexts M1

and M2 and we encrypt them to obtain ciphertexts c1 and c2:

c1 = (n+ 1)M1rn
s

1 mod ns+1

c2 = (n+ 1)M2rn
s

2 mod ns+1

Then if we multiply c1 and c2, we get

c′ = c1 ∗ c2 = (n+ 1)M1rn
s

1 ∗ (n+ 1)M2rn
s

2 mod ns+1

= (n+ 1)M1+M2(r1 ∗ r2)n
s

mod ns+1

which is a valid encryption of M1 + M2 using r′ = r1 ∗ r2.
Thus if we decrypt c′, then we will obtain M1+M2 as desired.

2) Multiplying an Encrypted Number by a Scalar: Next,
we’ll show how to multiply an encrypted number by an
unencrypted scalar. Consider that we have the plaintext M
and the corresponding encryption c:

c = (n+ 1)Mrn
s

mod ns+1

Then we can obtain the encryption of the product of M and
some scalar x by computing cx since

c′ = cx =
(

(n+ 1)Mrn
s
)x

mod ns+1

= (n+ 1)Mx(rx)n
s

mod ns+1

which is a valid encryption of Mx using r′ = rx. Thus if we
decrypt c′, then we will obtain Mx as desired.

F. Decryption

Decrypting a ciphertext c requires combining the decryption
of c using multiple shares of the secret key.

First, each authority performs part of the decryption using
its portion of the secret key. Specifically, the ith authority
computes ci = c2∆si where ∆ = l!, l is the number of secret
key shares, and si is the ith authority’s secret key share.

Once each authority has computed its portion of the de-
cryption, those portions need to be combined to obtain the
overall decryption. Since we only need w shares to perform
the decryption (where w is the threshold decided during key



CRYPTOVOTE, 6.857 FINAL PROJECT, SPRING 2019 3

generation), we will take a subset S consisting of w shares
and combine them as follows2:

c′ =
∏
i∈S

c
2λS

0,i

i mod ns+1 where λS0,i = ∆
∏

i′∈S\{i}

−i′

i− i′

An astute reader may recognize the λS0,i term as a slight variant
of the polynomial reconstruction expression from Shamir’s
secret sharing scheme. Thus, we can see that the c′ we have
computed is actually:

c′ = c4∆2f(0) = c4∆2d

Next, recall that d was chosen so that d = 1 mod ns and
d = 0 mod m. Thus, we can see that 4∆2d = 4∆2 mod ns

and 4∆2d = 0 mod m. From here, it is possible to show that
we can simplify c′ to get:

c′ = c4∆2d = (n+ 1)4∆2Mdr4∆2nsd mod ns+1

= (n+ 1)4∆2Mr0 mod ns+1

= (n+ 1)4∆2M mod ns+1

For a detailed derivation, see [2].
At this point, all that is left is to extract M from the

exponent in c′. In [2], the authors prove that the algorithm
presented in Algorithm 1 can extract the exponent i from any
integer a of the form a = (n + 1)i mod ns+1. Applying
Algorithm 1 to c′, we obtain the exponent 4∆2M . Finally, we
multiply this term by (4∆2)−1 mod ns to obtain the plaintext
message M .

Algorithm 1 Damgård-Jurik Reduce

1: procedure REDUCE(a, n, s)
2: i = 0
3: for j = 1 to s do
4: t1 = (a mod nj+1 − 1)/n
5: t2 = i
6: for k = 2 to j do
7: i = i− 1
8: t2 = t2 ∗ i mod nj

9: t1 = t1 − t2∗nk−1

k! mod nj

10: i = t1
11: return i

III. SHUFFLE-SUM PROTOCOL

The Shuffle-Sum protocol was developed by Benaloh et
al. [1] to tally an encrypted STV election. The main idea of
the protocol is to perform shuffles in between each threshold
decryption by the authorities so as to safeguard the confiden-
tiality of the ballots, even among the authorities themselves.
Suppose there are l authorities and w is the minimum num-
ber of authorities required to tally an election. The security
assumption requires only that at least l − w + 1 authority is
honest. Hence, if l = w, only one authority will need to be
honest. With such an assumption held, the individual ballots

2Note: In [2], the numerator of the λS0,i expression is −i instead of −i′,
but we believe this is a mistake.

are guaranteed to be safe (i.e., only necessary information
can be inferred about each individual ballot), which in turn
helps prevent coercion. As a preliminary, the protocol assumes
a secure homomorphic encryption scheme. The protocol is
concerned with single transferable vote elections, although it
is worth noting that only very slight modifications are required
to further support most other popular social choice functions.

Throughout the protocol, the ballots go through different
representations to allow for homomorphic operations on dif-
ferent fields of data (while preserving ballot confidentiality).
More precisely, we define four representations for a ballot.

• Candidate-order ballot. Columns are ordered with re-
spect to the identification number of the candidates.
The preference for each candidate is encrypted. It also
contains the encrypted weight of the ballot.

• Preference-order ballot. Columns are ordered so that the
preferences are from most desired to least desired. The
candidate identification number corresponding to each
preference is encrypted. It also contains the encrypted
weight of the ballot.

• Candidate-elimination ballot. The same as preference-
order ballot, except that there is an encrypted flag (0 or 1)
for each candidate indicating whether he or she is being
eliminated in the round being considered. The preferences
row is also encrypted, not for confidentiality (since the
columns are sorted by preferences anyway), but rather
for functionality (to allow for addition or subtraction with
other encrypted numbers).

• First-preference ballot. Columns are sorted in the order
of candidates. There is an encrypted row of weights which
contains the current weight of the ballot for the candidate
who is the voter’s first preference and contains 0 for all
other candidates.

Each ballot cast is initially stored in the candidate-order
ballot form. Then, given all the ballots in this form, the
authorities can tally the election with a tallying process that
occurs in multiple rounds, each consisting of the following
steps.

1) Compute first-preference tallies. Candidate-order bal-
lots are converted into the first-preference represen-
tation. Then, the tally for each candidate is simply
the homomorphic addition of each ballot’s encrypted
weight in the corresponding candidate column (note
that the unencrypted weight is non-zero for exactly one
candidate). The authorities can then work together to
decrypt the tallies.

2) Elect candidates (if any). In this step, the candidates
whose tally is at least the set quota get elected and are
announced to have been elected.

3) Reweight votes (only if at least one candidate was
elected). This process is to re-adjust the weight of the
ballots whose most-desired candidate was just elected.
To do this, we simply perform the appropriate homomor-
phic multiplications to the ballots in the first-preference
representation.

4) Eliminate candidates. If there were candidates elected
during this round, eliminate them from the ballots.



CRYPTOVOTE, 6.857 FINAL PROJECT, SPRING 2019 4

Otherwise, eliminate the one candidate who received
the least votes. This is done by converting candidate-
order ballots into the candidate-elimination representa-
tion. Then, appropriate homomorphic subtractions with
elimination tags are performed, before the ballots are
converted back into the candidate-order representation.

More details of each step are available in the original
Shuffle-Sum paper [1], although they will also be briefly
explained in Section IV.

There are a few ballot conversion subroutines that are inte-
gral to our protocol. Namely, we are interested in conversions
(1) from candidate-order ballot to first-preference ballot, (2)
from candidate-order ballot to candidate-elimination ballot,
and (3) from candidate-elimination ballot to candidate-order
ballot. While it is true that it is possible to simply decrypt the
ballot content and restructure the content accordingly before
re-encrypting the appropriate fields in order to obtain the ballot
in another representation, it is not secure, as this would mean
that any party doing the computation must have access to
the fully-decrypted ballot at some intermediate point. Rather,
the specially designed conversion subroutines make use of
random shuffling so that the content of any specific ballot
being converted is never revealed to any authority (when there
are multiple authorities and our security assumption holds).

As described above, Shuffle-Sum requires voters to provide
a full ranking of all candidates. However, in many elections,
voters do not have to rank all candidates, and in some cases
there is a even cap on the number of candidates that a voter
is allowed to rank. A slight modification to the Shuffle-Sum
protocol makes it possible to handle these cases. In such an
election, an additional “stop” candidate is added to each ballot
and is given the preference immediately following the lowest
preference indicated by the voter. All un-ranked candidates
are then given lower preferences than the “stop” candidate
in a random permutation. The Shuffle-Sum protocol is then
modified so that the “stop” candidate is never elected or
eliminated. The existence of the “stop” candidate thus prevents
the voter’s vote from counting towards any (originally un-
ranked) candidate who has a lower preference than the “stop”
candidate.

IV. OUR IMPLEMENTATION

In this section, we describe our Python implementations of
the Damgård-Jurik cryptosystem and the Shuffle-Sum proto-
col.

A. Damgård-Jurik

Our implementation of the Damgård-Jurik cryptosystem
is available on GitHub at https://github.com/cryptovoting/
damgard-jurik. We have also published it to the Python Pack-
age Index (https://pypi.org/project/damgard-jurik/), meaning it
can be installed via pip: pip install damgard-jurik.
Below we describe some of the key components of the pack-
age. The only dependency outside of built-in Python functions
is gmpy2 [13].

1) Key Generation: Key generation occurs in a function
called keygen. keygen takes as input the number of bits
that the public and private keys should have, the public key
parameter s, the threshold number of shares for decryption w,
and the total number of shares to generate l. It uses gmpy2’s
next_prime and is_prime functions to find two safe
primes p and q with the appropriate number of bits and then
computes n = pq. It then uses a Chinese remainder theorem
function we implemented to find the secret key d. Next, it
applies Shamir’s secret sharing, which we implemented as a
separate module within the Damgård-Jurik package, to split d
into the appropriate number of shares. Finally, it returns the
public key and private keys as instances of the PublicKey
and PrivateKeyRing classes, which will be discussed in
the next section.

2) Public Keys and Private Keys: A PublicKey consists
of the parameters n and s along with two methods: encrypt,
which encrypts a single integer, and encrypt_list, which
is a convenience method that applies encrypt to every
integer in a list.

A private key is more complicated and is stored using two
different classes. Each share of the private key lives in an
instance of the PrivateKeyShare class, which holds i
and f(i), where f(X) is the polynomial defined by Shamir’s
secret sharing. It also holds a reference to the associated
PublicKey. The PrivateKeyShare class also contains
a decrypt method which performs that share’s portion of
the decryption, i.e., ci = c2∆si mod ns+1. All the Pri-
vateKeyShares for a particular keypair are then stored in an
instance of the PrivateKeyRing class. This class contains
a decrypt method which calls each PrivateKeyShare’s
decrypt method and then combines all of the partial decryp-
tions into the final decryption. As with the PublicKey, the
PrivateKeyRing class has a convenience method called
decrypt_list which decrypts every encrypted number in
a list.

3) Encrypted Numbers: While plaintexts are simply repre-
sented as basic Python integers, ciphertexts are represented as
instances of the EncryptedNumber class. An Encrypt-
edNumber contains an integer which is the actual encrypted
value along with a reference to the PublicKey which
produced that encryption.

To make it easy to apply homomorphic operations to
encrypted numbers, we overrode the +, -, *, and / operators
for the EncryptedNumber class to automatically apply the
operation in ciphertext space that is equivalent to the desired
operation in plaintext space. For instance, if c_1 and c_2 are
EncryptedNumbers containing encryptions of the integers
m_1 and m_2, then executing c = c_1 + c_2 actually
performs the operation c = c1 ∗ c2 mod ns+1 so that the
decryption of c is equal to m_1 + m_2.

4) Optimizations: To increase the speed of all encrypted
operations, we used gmpy2’s mpz class, which optimizes
operations on large integers. Additionally, we pre-computed
and stored many constants such as ns and ∆ = l! in the Pub-
licKey, PrivateKeyShare, and PrivateKeyRing
classes. Furthermore, since the reduction function in Algo-
rithm 1 computes nj and k! for the same values of j and k

https://github.com/cryptovoting/damgard-jurik
https://github.com/cryptovoting/damgard-jurik
https://pypi.org/project/damgard-jurik/


CRYPTOVOTE, 6.857 FINAL PROJECT, SPRING 2019 5

many times, we use Python’s built-in lru_cache decorator
to cache those operations to avoid redundant computation.

B. Shuffle-Sum

Our implementation of the Shuffle-Sum protocol is avail-
able at https://github.com/cryptovoting/shuffle-sum. Below we
describe the overall architecture of our implementation.

First, we discuss ballot representation and conversion be-
tween different representations.

1) Ballot representation: We represent each ballot with
an instance of the Ballot class as defined in bal-
lots.py. The Ballot class contains three sub-classes,
corresponding to each of the three representations of the
ballot: FirstPreferenceBallot, CandidateOrder-
Ballot, and CandidateEliminationBallot. Note,
however, that there is no subclass explicitly representing
preference-order ballots—it is unnecessary and was defined in
Section III only as a substructure of a candidate-elimination
ballot.

2) Ballot conversion: Also defined in ballots.py are
the conversion protocols needed for tallying. Each conversion
protocol requires a private key ring as a parameter to enable
threshold decryption of the ballot content. The details of how
these protocols work are outlined in the original Shuffle-
Sum paper [1] and will be omitted here. Note, however,
that the ballot conversion protocols that we implemented are
not completely secure as is: a protocol that takes as input
a private key ring basically requires that the party doing the
computation has all the private key shares necessary to decrypt
any ballot content, allowing them to maliciously decrypt and
see the content of any ballot they want. Ideally, we would
need a communication protocol between all the authorities
that would allow for a secure threshold decryption (i.e., where
each individual authority computes their partial decryption and
sends it to a server running the Shuffle-Sum protocol without
ever revealing their portion of the private key). Additionally,
as per the current implementation, shuffling is not completely
secure. These will be described in more detail as future work
in Section VII.

With the ballot structure constructed, we implement the
main protocol for tallying: stv_tally, which resides under
protocols.py. This protocol takes as an input (1) a list of
all ballots in the candidate-order representation, (2) the number
of seats, (3) the identification number of the “stop” candidate,
(4) a private key ring, (5) the public key, and (6) the list in
which the elected candidates should be stored. The procedure
mainly makes use of three subroutines, defined in the same
source file:

1) compute_first_preference_tallies – Deter-
mines who gets elected and converts candidate-order
ballots into the first-preference representation.

2) reweight_votes – Re-weights each ballot whose
top choice candidate was just elected.

3) eliminate_candidate_set – Eliminates the re-
cently elected candidates from the ballots. In case no
one was elected, the candidate who received the least
votes is eliminated.

At the end, the elected candidates are stored in the list initially
passed into the protocol.

Note that a private key ring is an argument to the protocol,
which, as discussed earlier, is not secure. Section VII contains
more details on how this security hole may be fixed.

V. PERFORMANCE

After verifying the correctness of our implementation on
small test cases, we proceeded to evaluate its performance on
real election data. Since encryption, decryption, and homomor-
phic operations on encrypted numbers are relatively slow, we
were particularly interested in how the overhead of encryption
affects the practicality of using our implementation for tallying
real-world election results.

A. Data

We evaluated our implementation on San Francisco’s
November 2016 Board of Supervisors election in District 1
[14], which featured 12 candidates vying for 1 open seat.
We downloaded anonymized ballots for the election from
the Ranked Choice Voting Resource Center [15]. We then
generated a public key and a private key, where the private
key consisted of 3 private key shares with a threshold of
3 to decrypt (i.e., all 3 keys are needed for decryption).
Next, we converted the ballots from ballot image format to
Shuffle-Sum’s candidate-order ballot format, with the voter’s
preferences encrypted using the public key. Since voters were
allowed to rank at most 3 of the 12 candidates, we used the
stop candidate variant of Shuffle-Sum by adding a 13th “stop”
candidate that was given the rank immediately following the
voter’s lowest marked preference. After filtering out invalid
ballots, we were left with 31,787 ballots.

B. Experimental Setup

All of the following experiments were run on a 2018 Mac-
book Pro with two 6-core 2.2GHz Intel Core i7 processors3.
Except where otherwise noted, the public and private keys use
32 bits of encryption and s = 1.

C. No Encryption

To establish a baseline for performance, we ran our Shuffle-
Sum implementation on the San Francisco election data with-
out any encryption (i.e. using a public key and a private key
ring that both act as an identity function). All other aspects of
the algorithm, including shuffling, were unchanged. Running
the election without encryption took 1.97 minutes.

D. Bits of Encryption

With this baseline established, we then experimented with
different levels of encryption by varying the number of bits in
the public and private keys. The results are presented in Table
I and Figure 1. As can be seen, even minimal 32-bit encryption

3Note that the number of cores is important since we implemented an
optimization that performs most of the Shuffle-Sum operations in parallel
across the ballots.

https://github.com/cryptovoting/shuffle-sum


CRYPTOVOTE, 6.857 FINAL PROJECT, SPRING 2019 6

TABLE I: Time vs number of bits of encryption.

Number of Bits Time (minutes)
32 6.66
64 8.76

128 15.12
256 68.63

Fig. 1: Time vs number of bits of encryption.

takes about 3.4x longer than the unencrypted baseline, indicat-
ing the amount of time taken by encrypting, decrypting, and
performing homomorphic operations. Furthermore, the time
taken appears to grow quadratically with the number of bits
of encryption. Extrapolating using quadratic regression to the
2048 bits typically used in RSA encryption (which is secure
due to the same difficulty of factoring a product of large
primes), we would expect that our implementation would take
about 5,795 minutes, or about 4 days, to tally the election4.
Fortunately, most of the operations are run in parallel, meaning
the time could be significantly reduced on a machine with
more CPU cores.

E. Exponent s

In addition to the number of bits used in the public and
private keys, the Damgård-Jurik exponent s, which controls
the size of the plaintext space Zns , also affects encryption
time. The results are presented in Table II and Figure 2. As
with the number of bits of encryption, the time to tally the
election seems to depend quadratically on s5. However, for
many applications, including the San Francisco election, the
largest plaintext ever used is less than n and so s = 1 produces
a plaintext space that is large enough for our purposes.

F. Number of Ballots

Another important question is how the time required to tally
an election depends on the number of ballots. Table III and
Figure 3 shows that the time is roughly linear in the number of
ballots6, as would be expected. Extrapolating to an election on

4The quadratic regression is f(x) = 0.00145x2 − 0.145x+ 10.6, which
has an R2 of 0.999.

5The quadratic regression is f(x) = 0.359x2 − 0.66x+ 6.94, which has
an R2 of 0.998.

6The linear regression is f(x) = 0.000203x− 0.0485, which has an R2

of 1.000.

TABLE II: Time vs exponent s.

Exponent s Time (minutes)
1 6.66
2 6.97
3 8.26
4 10.01

Fig. 2: Time vs exponent s.

the scale of the US presidential election in 2016, which saw
about 158 million votes, it would take our implementation
approximately 32,073 minutes, or about 22 days, to tally the
election using 32-bit encryption. Extrapolating to both 158
million votes and 2048-bit encryption, it would take about
28,804,543 minutes, or about 55 years, to tally the election.
Again, since most of the operations can be performed in paral-
lel, this time could be significantly reduced on a more powerful
machine. Furthermore, there may be other optimizations, such
as the Table-Sum algorithm from the Shuffle-Sum paper [1],
that could further reduce this time.

TABLE III: Time vs number of ballots.

Number of Ballots Time (minutes)
5,000 0.97
10,000 1.94
20,000 4.05
30,000 6.00

Fig. 3: Time vs number of ballots.



CRYPTOVOTE, 6.857 FINAL PROJECT, SPRING 2019 7

VI. WEB INTERFACE

While developers are able to make use of our Python
implementation of the Shuffle-Sum protocol, we recognize that
many people hoping to administer electronic elections may not
have the time nor technical capabilities to build a pipeline of
data into a set of Python modules. Therefore, we also built a
web interface that allows the easy creation and administration
of electronic elections7.

The goal of the web interface is to provide a method
of collecting encrypted ballots that is easy to use, secure
against malicious actors, and capable of authenticating voters
properly. Additionally, the web interface allows the tabulation
of elections results and the public posting of those results.

A. Election Creation

In our web implementation, elections are initially created by
one of the authorities who will be administering the election.
They begin the election creation process by visiting the home-
page of the Cryptovote web app and providing their name,
email address, and proposed election name. After verifying the
authority’s email address, the authority is prompted to select
a form of authentication, which could be either via WebAuthn
or a password (see Section VI-C). After registering authentica-
tion credentials, a new public/private keypair is automatically
generated for the authority. In the current implementation,
the public and private keypairs are both stored on the server
in a database (see Section VII for future improvements on
this implementation). Finally, the authority is prompted to add
candidates to the ballot by name and voters to the election by
email address following the initial election creation process.

After an election has been created, a subdomain with the
name of the election is generated on the web application.
This subdomain is a micro-website that is the central location
to access anything regarding its corresponding election for
authorities, voters, and members of the public. Through this
subdomain, members of the public have the ability to see the
list of candidates, the list of authorities, and the public bulletin
associated with the Shuffle-Sum protocol [1]. Additionally,
authenticated authorities have the ability to add new voters
to the election and end the election by tabulating the election
results.

B. Voting

Voters are invited to cast ballots in the election by email.
After an authority adds the voter to the election by email
address, the voter will immediately receive an email asking
them to cast their ballot in the election. The email jointly
serves as an invitation to vote in the election and as a tool for
email address verification.

Once the voter has followed the link to vote in the election,
the voter is asked to supply their name for listing on the voter
role. After this, the voter is taken to an electronic ballot which
lists all candidates. The voter indicates their preferences by
dragging and dropping candidates to sort them in the order
of their preference. By design of the input mechanism, all

7The web interface is accessible at https://cryptovote.ml.

candidates must be sorted as is required by the stop-candidate-
free Shuffle-Sum algorithm. Every time the ballot is loaded, it
initially displays the candidates in a random order to prevent
ranking bias based on order of appearance.

After a voter has cast their electronic ballot, they cannot
modify that ballot and cannot vote in the election again as the
same voter.

C. User Authentication

As previously mentioned, voters and authorities are veri-
fied using their email address when voting or creating their
authority account, respectively. In essence, both voters and
authorities are identified on the site by their email address,
since that is the only currently verified piece of information.

Voters do not have traditional “accounts” on the Cryptovote
website which would allow them to log back in with a pass-
word after voting; this was a design decision to decrease the
time and effort required for users to cast a ballot. Authorities,
however, do have credentials that enable them to log back into
the site after their initial account creation. This is necessary for
authorities to be able to manage the election after its creation;
i.e., to add additional voters and tabulate the final results of
the election.

Authorities have the choice of two different methods for au-
thenticating with the Cryptovote web application: WebAuthn
and passwords.

WebAuthn is a browser-native protocol that enables public
key authentication of users via JavaScript for websites imple-
menting the WebAuthn standard [16]. WebAuthn works by
requiring that the server store the public key of a user instead
of a hashed password. When a user requests authentication via
WebAuthn, the server submits a challenge to the client. The
client completes that challenge using their secret key. Secret
keys may be stored by the user in a variety of fashions, but
typically involve some kind of security hardware. For example,
on a MacBook, WebAuthn security keys can be placed into
local storage and protected with the fingerprint reader built into
the computer’s hardware. For more portability, USB security
keys can also be used on most computer hardware. The
WebAuthn workflow is visualized8 in Figure 4.

The initial design of the Cryptovote web application used
WebAuthn as the only form of authentication for authorities
because of its desirable security properties. However, we later
chose to add password authentication as a secondary option
because user testing revealed that a substantive portion of user
hardware does not natively support WebAuthn. Rather than
requiring some users to purchase USB security keys in order
to use the web application, we opted to allow a more traditional
form of authentication in addition to WebAuthn.

D. Implementation

The Cryptovote web application backend was written in
Python using the Flask microframework. The frontend of the
web application is built using the Bootstrap library. Database

8Graphic from https://auth0.com/blog/introduction-to-web-authentication/.

https://cryptovote.ml
https://auth0.com/blog/introduction-to-web-authentication/


CRYPTOVOTE, 6.857 FINAL PROJECT, SPRING 2019 8

Fig. 4: Visualization of WebAuthn protocol.

functionality is abstracted by the SQLAlchemy toolkit, which
enables support for most major SQL-like database hosts.

The source code for the Cryptovote web application can be
found at https://github.com/cryptovoting/cryptovote.

VII. FUTURE WORK

A. Zero-knowledge proofs

The Shuffle-Sum paper [1] describes multiple protocols that
serve as zero-knowledge proofs for validity of different stages
of the STV tally protocol. They include, but are not limited to,
proving that a certain candidate should be eliminated, proving
that a certain candidate does indeed have enough votes for the
quota, and proving that some candidate has the lowest tally in
a round.

Due to time constraints, we have not implemented these
zero-knowledge proofs, but they would be a very useful feature
both in the Python package and on the website, as they can
make the election results more verifiable for the voters.

B. Table-Sum Protocol

A faster alternative for the Shuffle-Sum protocol, called
Table-Sum, is proposed in the same paper as the Shuffle-
Sum protocol [1]. The main idea behind Table-Sum is that
it uses an m ×m matrix instead of a ballot with candidates
and preferences. A matrix entry at row i, column j is an
encryption of −1 if candidate i is preferred to candidate j,
and an encryption of 0 otherwise.

This way, elimination of candidates does not require con-
verting between three types of ballots but rather just requires
ignoring a column of the matrix. On the other hand, it comes
with a spatial complexity of O(m2), where m is the number
of candidates.

C. Multi-Authority Tallying

The Damgård-Jurik cryptosystem was chosen due to its
homomorphic properties and because it can be structured as a
threshold cryptosystem, meaning decryption requires multiple
authorities, as described in Section II-F. Furthermore, those

authorities can all perform their part of the decryption by
themselves and combine their results without ever revealing
their own secret keys to each other.

The latter property enables us to have multiple election
authorities. While our implementation does use threshold
decryption with multiple shares of the secret key, it is not yet
done in a secure way. Specifically, our current implementation
has a single process running the Shuffle-Sum protocol, and this
one process has access to the entire private key ring with all
the private key shares. This is not desirable, as it means that
one party holds all the secret key shares at the same time.

That said, supporting secure threshold decryption would
only require a few infrastructural changes to the code. There
would still be a single process computing the tally, but this
process would not have access to any of the private key
share. Instead, any time the process requires a decryption, it
would send the ciphertext to each of the election authorities,
who would compute and send their portion of the decryption
using their share of the private key. The election tallying
process would then collect these shares and compute the
full decryption. This can all be done without any election
authority revealing their portion of the private key. Note that
measures will need to be taken in order to ensure that the
server requests a valid decryption for the tallying process
(e.g. not a malicious ciphertext like an individual ballot).
Alternatively, the authorities could do all the computations in
parallel. This way, each authority knows which decryptions
are actually necessary to tally the vote, allowing the authorities
to determine whether any requested decryptions are malicious.
One downside of this approach, however, is that it will require
more computation power.

Although this added infrastructure would slow down the
computation slightly due to network latency, each authority
can perform their portion of the decryption independently and
simultaneously, meaning this design can support an arbitrary
number of election authorities with only a minimal increase
in runtime.

D. Shuffling Protocol

A secure shuffling protocol is vital for ballot confidentiality.
Currently, our shuffling protocol only generates a pseudo-
random permutation. As such, the authority doing the com-
putation can reconstruct the permutation and learn about the
individual ballots after threshold decryption, breaking confi-
dentiality of the ballots. In fact, even a random oracle that
takes as an input a ballot and outputs the ballot with the
columns randomly shuffled would not address this security
vulnerability. For full security, all authorities should influence
the shuffle outcome, and the encrypted ballot content must be
re-randomized.

E. Web Interface

There are multiple enhancements that we would like to
make to the current Cryptovote web application implemen-
tation.

First, the secret keys of authorities are currently stored by
the server in the web application database. In order to provide

https://github.com/cryptovoting/cryptovote


REFERENCES 9

the full security guarantees of Shuffle-Sum, future work will
involve removing the storage of any authority’s secret key from
the server. Instead, authorities would need to store secret keys
locally on their own machines such that the server does not
have the ability to decrypt ballots without action on the behalf
of the authority.

Similarly, future work will involve moving all Shuffle-
Sum operations involving secret keys to client-side JavaScript
instead of server-side Python code. This, too, will help ensure
the secrecy of authority secret keys.

Additionally, future work will involve extending the web
interface to allow multiple authorities per election. While the
modifications to the underlying protocol will be minimal, the
largest challenge will involve creating a secure channel in
which all authorities can directly communicate to tabulate
election results in the browser and share decryption informa-
tion as described in a previous subsection.

In addition to these larger extensions, other future work on
the web implementation will involve implementing two-factor
authentication and having voters sign their encrypted ballots
to verify ballot integrity.

VIII. CONCLUSION

Although the Shuffle-Sum protocol works on the specific
single transferable vote type of ranked choice voting, it should
be possible to apply it to any ranked choice election with
minor modifications of the protocols. We hope that our Python
implementation will be a good start for anyone who wants
to implement a slightly different algorithm, and they could
always use a different type of homomorphic encryption as
our code is designed in a modular fashion. Nevertheless, we
believe that Damgård-Jurik should do the job in most cases
thanks to its many useful properties.

We decided to set up a website to make it more convenient
to use, as it would be very convenient for voters to vote and
for authorities to compute results. Hopefully, it will enable
people to run secure ranked choice elections online.

Although our current implementation needs a lot of com-
putational power for an election on a scale of a state or
nation, it may still be more efficient than in-person voting as
a lot of personnel is required to both collect and tally votes.
Election results also do not need to be available immediately,
so a couple of hours on a large computing cluster should be
acceptable.

ACKNOWLEDGMENT

The authors would like to thank the staff of MIT course
6.857 for their contributions to this paper. Particularly, we
would like to thank Professor Ron Rivest and Professor Yael
Kalai for providing course instruction on many of the topics
addressed in this paper and for providing suggestions on how
to approach the problems we chose to address. Additionally,
we are grateful for the support given by TA Leo de Castro,
who was the assigned advisor for this paper.

We are further grateful for the input of Josh Benaloh, whose
input into this project led us to his own work on Shuffle-Sum,
which ended up being the basis for this paper. We are also
grateful for the input of Vanessa Teague.

REFERENCES

[1] J. Benaloh, T. Moran, L. Naish, K. Ramchen, and
V. Teague, “Shuffle-sum: Coercion-resistant verifiable
tallying for stv voting,” Trans. Info. For. Sec., vol. 4,
no. 4, pp. 685–698, Dec. 2009, ISSN: 1556-6013. DOI:
10.1109/TIFS.2009.2033757. [Online]. Available: http:
//dx.doi.org/10.1109/TIFS.2009.2033757.

[2] I. Damgård and M. Jurik, “A generalisation, a simplifi-
cation and some applications of paillier’s probabilistic
public-key system,” Basic Research in Computer Sci-
ence, Dec. 2000. [Online]. Available: https://www.brics.
dk/RS/00/45/BRICS-RS-00-45.pdf.

[3] “Electronic voting,” Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/Electronicvoting.

[4] X. Yang, X. Yi, S. Nepal, A. Kelarev, and F. Han, “A se-
cure verifiable ranked choice online voting system based
on homomorphic encryption,” IEEE, pp. 20 506–20 519,
2018.

[5] A. Azougaghe, M. Hedabou, and M. Belkasmi, “An
electronic voting system based on homomorphic en-
cryption and prime numbers,” 11th International Con-
ference on Information Assurance and Security, 2015.

[6] Y. Zhao, Y. Pan, S. Wang, and J. Zhang, “An anony-
mous voting system based on homomorphic encryp-
tion,” 10th International Conference on Communica-
tions, 2014.

[7] “First-past-the-post voting,” Wikipedia, [Online]. Avail-
able: https : / / en . wikipedia . org / wiki / First - past - the -
post voting.

[8] “Single transferable vote,” Wikipedia, [Online]. Avail-
able: https://en.wikipedia.org/wiki/Single transferable
vote.

[9] “Spoiler effect,” Wikipedia, [Online]. Available: https:
//en.wikipedia.org/wiki/Spoiler effect.

[10] E. Watkins, “How gary johnson and jill stein helped
elect donald trump,” Nov. 2016. [Online]. Available:
https : / / www. cnn . com / 2016 / 11 / 10 / politics / gary -
johnson-jill-stein-spoiler/index.html.

[11] P. Paillier, “Public-key cryptosystems based on com-
posite degree residuosity classes,” EUROCRYPT’99,
pp. 223–238, 1999. [Online]. Available: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.112.4035&
rep=rep1&type=pdf.

[12] A. Shamir, “How to share a secret,” Communications of
the ACM, vol. 22, pp. 612–613, 11 Nov. 1979. [Online].
Available: https://dl.acm.org/citation.cfm?doid=359168.
359176.

[13] [Online]. Available: https://gmpy2.readthedocs.io/en/
latest/#.

[14] “2016 san francisco board of supervisors election,”
Wikipedia, [Online]. Available: https : / / en . wikipedia .
org /wiki / 2016 San Francisco Board of Supervisors
election.

[15] [Online]. Available: https : / /www.rankedchoicevoting.
org/data clearinghouse.

[16] Dirk Balfanz, Alexei Czeskis, Jeff Hodges, J.C. Jones,
Michael B. Jones, Akshay Kumar, Angelo Liao, Rolf

http://dx.doi.org/10.1109/TIFS.2009.2033757
http://dx.doi.org/10.1109/TIFS.2009.2033757
http://dx.doi.org/10.1109/TIFS.2009.2033757
https://www.brics.dk/RS/00/45/BRICS-RS-00-45.pdf
https://www.brics.dk/RS/00/45/BRICS-RS-00-45.pdf
https://en.wikipedia.org/wiki/Electronicvoting
https://en.wikipedia.org/wiki/First-past-the-post_voting
https://en.wikipedia.org/wiki/First-past-the-post_voting
https://en.wikipedia.org/wiki/Single_transferable_vote
https://en.wikipedia.org/wiki/Single_transferable_vote
https://en.wikipedia.org/wiki/Spoiler_effect
https://en.wikipedia.org/wiki/Spoiler_effect
https://www.cnn.com/2016/11/10/politics/gary-johnson-jill-stein-spoiler/index.html
https://www.cnn.com/2016/11/10/politics/gary-johnson-jill-stein-spoiler/index.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.4035&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.4035&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.4035&rep=rep1&type=pdf
https://dl.acm.org/citation.cfm?doid=359168.359176
https://dl.acm.org/citation.cfm?doid=359168.359176
https://gmpy2.readthedocs.io/en/latest/#
https://gmpy2.readthedocs.io/en/latest/#
https://en.wikipedia.org/wiki/2016_San_Francisco_Board_of_Supervisors_election
https://en.wikipedia.org/wiki/2016_San_Francisco_Board_of_Supervisors_election
https://en.wikipedia.org/wiki/2016_San_Francisco_Board_of_Supervisors_election
https://www.rankedchoicevoting.org/data_clearinghouse
https://www.rankedchoicevoting.org/data_clearinghouse


CRYPTOVOTE, 6.857 FINAL PROJECT, SPRING 2019 10

Lindemann, and Emil Lundberg, “Web authentication:
An API for accessing public key credentials level 1,”
W3C, Mar. 4, 2019. [Online]. Available: https://www.
w3.org/TR/webauthn/ (visited on 05/15/2019).

https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/

	Introduction
	Damgård-Jurik Cryptosystem
	Overview
	Applicability to Voting
	Additively Homomorphic
	Threshold Decryption

	Key Generation
	Encryption
	Homomorphic Operations
	Adding Encrypted Numbers
	Multiplying an Encrypted Number by a Scalar

	Decryption

	Shuffle-Sum Protocol
	Our Implementation
	Damgård-Jurik
	Key Generation
	Public Keys and Private Keys
	Encrypted Numbers
	Optimizations

	Shuffle-Sum
	Ballot representation
	Ballot conversion


	Performance
	Data
	Experimental Setup
	No Encryption
	Bits of Encryption
	Exponent s
	Number of Ballots

	Web Interface
	Election Creation
	Voting
	User Authentication
	Implementation

	Future Work
	Zero-knowledge proofs
	Table-Sum Protocol
	Multi-Authority Tallying
	Shuffling Protocol
	Web Interface

	Conclusion

