
6.857 Recitation 9: Quiz Review

TAs: Andrew He, Leo de Castro, Sean Fraser

Friday April 12, 2019

Agenda

• One Time Pad

• Hash Functions and Applications (e.g. Merkle Trees)

• Block Ciphers & Modes of Operation

• Security Scheme Definitions

CPA-security, CCA-security, (symmetric / public key crypto)

• Message Authentication Codes (MACs)

• Quadratic Residues, Discrete Log, CDH, DDH

• Diffie Helman Key Exchange

• Shamir Secret Sharing (on quiz but not covered today, see lecture notes / paper)

• Commitment Schemes (Definition, Pedersen Commitments)

• Public Key Cryptosystems

El Gamal

RSA

• Digital Signatures

Hash & Sign Paradigm

El Gamal + DSA

• Miscellaneous (on quiz but not covered today, read lecture notes):

Security of ML, PKI + TLS, Bitcoin, Differential Privacy, Voting Security

The last two thirds of the notes from the recitation are given below (starting at Quadratic
Residues, Discrete Log, CDH, DDH).
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1 DDH and QR

Recall the DDH assumption, where we assume that (gx, gy, gxy) ⇡c (gx, gy, gz). In the pset,
you will show that this assumption is false for general groups.

At a high level, the attack involves testing the order of an element in the group. But,
what if all the elements in the group had the same order?

Theorem 1 (Lagrange’s Theorem). For every finite group G and every element x 2 G, |x|
divides |G|.

If the order of G is prime, then every element x 2 G where x 6= 1 will have order |x| = |G|.
We will construct such a group.

1.1 Quadratic Residues

Definition (Quadratic Residue). An element y 2 G is a quadratic residue if there exists an
x 2 G such that x2 = y (multiplication over G).

Consider a prime of the form p = 2q + 1, where q is also prime1.

Lemma. For all y = x2, where x 2 G, 2|y| � |x|.

Proof. Since the order of x is the smallest exponent t such that xt = 1, we know that t
cannot exceed 2s, where ys = 1, since ys = x2s = 1.

Theorem 2. For every safe prime p = 2q + 1 > 7, every quadratic residue in Z⇤
p that is not

1 has order q.

Proof. The order of Z⇤
p is p� 1 = 2q. By theorem 1, the only possible orders of elements in

Z⇤
p are 1, 2, q, and 2q, since these are the only numbers that divide 2q.

Consider a quadratic residue y = x2 6= 1 in Z⇤
p.

|y| 6= 1, since y 6= 1.
|y| 6= 2, since if it did then |x| would have to either be 3 or 4 by the lemma above (if x

had order 1 or 2 then we would have y = 1). Since p > 7, q > 3, we have that 3 6= q and 4
is not prime, so by Lagrange’s Theorem these orders are not possible.

|y| 6= 2q, since the order of y cannot be greater than q. This is because yq = x2q = xp�1 =
1, by Fermat’s little theorem.

Therefore, |y| = q.

Theorem 3. The set of quadratic residues of Z⇤
p for a safe prime p is a subgroup.

Proof. Call QR the set of quadratic residues in Z⇤
p. Let’s enumerate the properties of an

abelian group.

1. Identity. 1 2 QR, since (�1)2 = 1.

1p is called a safe prime and q is called a Sophie Germain prime.
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2. Closure. If y1 = (x1)
2 and y2 = (x2)

2, then y1 · y2 = (x1 · x2)
2, so y1 · y2 2 QR.

3. Associativity and Commutativity. Inherited from Z⇤
p.

4. Unique inverses. For all y = x2, we know there exists a unique y�1 2 Z⇤
p such that

y · y�1 = 1. All we need to show is that y�1 is a quadratic residue. Consider x�1. We
know that y · (x�1)2 = x2 · (x�1)2 = 1, so (x�1)2 = y�1 2 QR.

We now have a group of prime order. Finding a generator (an element g such that
|g| = |QR|) is easy, since by theorem 2 any quadratic residue that’s not 1 has order q = |QR|.
In many of the constructions in class, we’ll need to work over a group of prime order, so
these results are very useful.
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1 Man-In-The-Middle Attacks

We will illustrate an example of a Man-In-The-Middle attack using the textbook Di�e-
Hellman (DH) Key Exchange. Suppose we have a communication channel between Alice (A)
and Bob (B) with an active eavesdropper (Eve, or E) as shown. In class we showed this setup
with a passive eavesdropper, and we will show why an active eavesdropper is problematic.

Recall: DH Key Exchange

• G is a finite cyclic group, with generator g.

– G = {g0, g1, ..., g|G|�1}
– G and g are fixed and public

• A and B compute K = gxy = (gx)y = (gy)x

• Relies on DDH - Decisional Di�e Hellman Assumption: (gx, gy, gxy) ⇡c (gx, gy, gz)

Given gx and gy, cannot distinguish between gxy and gz with probability > 1
2

+ �,
where u {0, 1, ..., |G| � 1} (randomly drawn).
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Note: confer with CDH, Computational Di�e Hellman assumption, in Lecture 9,
which is less strong.

Assuming DDH, Di�e Hellman is secure under a passive adversary.

Problem: Totally insecure to an active eavesdropper.

Man-in-the-Middle Attack (MITM): active eavesdropper can intercept and relay
messages in between Alice and Bob. In the DH key exchange for example, this means
the adversary can establish a di↵erent key with each of A and B separately, using the
DH key exchange, tricking Alice and Bob that Eve is the other person respectively
when she is really not. This might work as shown below, with Eve intercepting each
of gx from Alice and gy from Bob and sending ge to both. This gives Eve full power to
encrypt and decrypt messages between Alice and Bob, and change them how she likes.

Problem: Authenticity. A and B have no way of verifying the “identity” of the other.

Potential solution: Digital Signatures.
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2 Pedersen Commitments

For generators g and h of a prime order group, a Pedersen commitment to a value x with
randomness r is c = gxhr. To open the commitment, reveal x and r.

These commitments are perfectly hiding, since there exists an r0 for any x0 we may want
to open. This is because h = ga for some a, so c = gz = gx+ra. Solving for r, we get that
r = a�1(z � x).

Remark. For a general multiplicative group G, the exponents can be represented as elements
in Zq, where q = |G|. Since |G| is prime in the case above, Zq is a field, so a�1 is always well
defined (for a 6= 0).

For a given commitment, there exists an r0 for every x0, so these commitments can only be
computationally binding. However, we can reduce the hardness of opening the commitments
in two di↵erent ways to the di�culty of computing discrete logs by showing how to compute
the discrete log of h = ga given two di↵erent openings for c = gxhr = gz.

Given two openings (x, r) and (x0, r0), we know that c = gxhr = gx0
hr0 . Therefore,

z = x + ra = x0 + r0a, so solving for a gives us the following equation:

a =
x� x0

r0 � r

Opening a Pedersen commitment in two di↵erent ways is at least as hard as computing the
exponent a. If the discrete log assumption holds, then the exponent a is hard to compute,
so Pedersen commitments are computationally binding.
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