Admin: Pset #1 due 2/26
Pset #2 out 2/26

Today: Cryptographic Hash Functions
- Definition
- Random Oracle Model (ROM)
- Properties: OW, CR, TCR,
- Applications

Reading: Katz-Lindell (2nd edition) - Chapter 5

Def: Hash family is a family of functions
\[\{ h_s \} \text{ st. } h_s : \{0,1\}^* \rightarrow \{0,1\}^d \]

bit strings of any length.

and given \((s,x) \) one can efficiently compute \(h_s(x) \).

\(s \) is called "the seed" and is public.

\(h_s(x) \) is called "hash value" or "message digest".
An ideal hash function: A "Random Oracle" (RO)

- Theoretical model, not achievable in practice, called Random Oracle Model (ROM):
 - Model the hash function as an oracle (Black Box), that on any input $x \in \mathbb{Z}^*$:
 - If x was not queried before, output a truly random value in \mathbb{Z}^d, denoted by $h(x)$;
 - O.w. if x was already queried, return the same answer.

The oracle records all queries, and returns a truly random value in \mathbb{Z}^d.

- Many cryptographic primitives use hash functions, and security is proved in the ROM.
- In practice the hash function is implemented using one of the standardized hash functions, such as SHA-256 (SHA: Secure Hash Algorithm).
SHA-256 is not a random oracle, but is hopefully "pseudo random enough" that an adv cannot exploit any flaws in it.

Desirable properties for hash functions:

1. **One-way** : Given random $y \in \{0,1\}^d$ hard to find $x \in \{0,1\}^*$ s.t. $h(x) = y$

 [Note that such x exists (w.h.p.) and can be found via "brute-force" in time $O(2^d)$ (even in ROM)]

2. **Collision Resistance** (CR)

 Given a seed s it is hard to find any $x, x' \in \{0,1\}^*$ s.t. $h_s(x) = h_s(x')$.

 - This property cannot hold unless the hash is seeded (i.e. chosen at random from a family of functions) since ow. a collision can simply be "hard wired" since $S \subset \{0,1\}^*$.

 [In the ROM collisions can be found in time $\approx 2^{d/2}$:]

 - Query x_1, x_2, \ldots until a pair x_i, x_j collide.
 - This is called the "birthday paradox"
(3) **Target Collision Resistance (TCR):**

Given any $x \in \{0,1\}^*$ and given a random seed s, it is hard to find $x' \neq x$ s.t. $h_s(x) = h_s(x')$

Similar to CR but one preimage is fixed and known.

\[
\text{[In ROM can find } x' \text{ in time } O(2^d), \text{ similar to OW, }]
\]
\[
\text{[since knowing } x \text{ does not help finding } x' \text{ in the ROM]}
\]

(4) **Pseudo-randomness (PRF):**

Obtaining black box access to h_s (for random s) is computationally indistinguishable (i.e., indisting. by poly-bounded adv.) from a RO.

This property cannot hold unless the hash is seeded (i.e., is chosen randomly from a family of functions).

(5) **Non-malleability (NM):**

Given $h(x)$ for a randomly chosen x, it is hard to produce $h(x')$ where x' is related to x (e.g. $x' = x + 1$)

Informal...
Thm: 1. \(h_s^3 \) is CR \(\Rightarrow \) \(h_s^3 \) is TCR
 (the converse does not hold)

2. \(h_s^3 \) is CR \(\Rightarrow \) \(h_s^3 \) is OW
 since \(h_s \) compresses.
 (the converse does not hold)

Example: Consider \(h_s^3 \) that is OW and TCR s.t.
\[h_s(0) = h_s(1) \quad \text{or} \quad h_s(s) = h_s(s+1) \]

Hash Function Applications:

- **Password Storage** (for login)
 - Store \(h(pw) \), rather than \(pw \)
 - When user logs in, check that hash of \(pw \) is consistent with stored value
 - **Security**: \(h(pw) \) should not reveal \(pw \)
 or any preimage that hashes to \(h(pw) \)

Need OW
2. **File modification detector:**
 - For each file F store $h(F)$ securely.
 - Can check if F was modified by computing $h(F)$.
 - **Security:** Given F should be hard to find F' s.t. $h(F) = h(F')$

 Need TCP

3. **Digital Signatures (hash & sign):**

 Each user, say Alice has keys (PK_A, SK_A).

 $PK_A =$ Alice’s public key (used to verify Alice’s signature)

 $SK_A =$ Alice’s secret key (used for signing)

 Signing: $\sigma = \text{sign}(SK_A, m)$ can be randomized

 $\text{Verify} (PK_A, m, \sigma) \in \{\text{acc/rej}\}$

 If m is very long this can be quite inefficient.
The hash-and-sign paradigm:

Sign $h(m)$ (as opposed to m).

Intuitively, $h(m)$ is a "proxy" for M.

Security: An adversary cannot forge a signature to any message even if he sees signatures of (other) many messages of his choice.

Need CR Else, an adv. can find $m \neq m'$ s.t. $h(m) = h(m')$ and ask Alice to sign m, and then can use this same signature as a (valid) signature for m'.

Commitments:

A commitment scheme allows any user, Alice, to commit to a value x (e.g., an auction bid), denoted by $\text{com}(x, r)$ s.t.

- **Binding property**: Alice should not be able to open the commitment in more than one way.
e.g., it is hard to find \((x, r) \& (x', r')\) s.t. \(x \neq x'\) and \(\text{com}(x; r) = \text{com}(x'; r')\).

Hiding property: \(\text{com}(x; r)\) should reveal no information about \(x\). Namely \(\forall x, x'\)
(of same size) \(\text{com}(x; r) \equiv \text{com}(x'; r')\)
looks the same in the eye of a poly-time adv.

Non-malleability: Given \(\text{com}(x; r)\) it should be hard to compute a commitment to a related value, say \(\text{com}(x+1; r')\).

Idea: \(\text{com}(x; r) = h(x, r)\)

Need:
- For binding - \(\text{CE}\)
- For non-malleability - \(\text{NM}\)
- For hiding - ?