
A Mathematical Analysis of Catcher/Pitcher

Encryption Schemes

{mlancast, samird, mtwu}@mit.edu

May 16th, 2018

1 Introduction

For those unfamiliar with the game of baseball, there are a few important actors
that play a role in every single play of the game. The pitcher throws the
baseball to his teammate, the catcher, while a member of the opposing team,
the batter, attempts to hit the thrown ball. Pitchers use a variety of different
types of pitches in an attempt to prevent the batter from hitting the ball.
There are many different types of pitches, each of which moves with different
speeds, curves, slides, or dips. The four main pitches (and the ones we will refer
to in this paper) are

• The fastball - thrown straight and fast

• The curveball - thrown with spin so that it dives or curves

• The slider - thrown with spin so that it tails laterally

• The changeup - thrown slowly

Before throwing a pitch, the pitcher and catcher need to agree on the
pitch to be thrown. Usually, the catcher will indicate to the pitcher which
pitch he thinks should be thrown using a series of hand signs. The pitcher will
simply shake or nod his head in (dis)agreement. The standard mapping used
by catchers to indicate pitches is one finger for fastball, two for curveball, three
for slider, and four for a changeup. Obviously the catcher cannot simply tell
the pitcher out loud which pitch to throw, because then the batter will gain
a competitive advantage in that he knows which pitch to expect. Instead, the
catcher will use hand signs, as seen in Figure 1 below, to indicate which pitch
to throw.

Now that we have explained one of baseball’s basic constructions, we will
move on to explain how this is related to cryptography and frame this problem
as a cryptography one. There is a specific scenario in the game of baseball
in which the above scheme for communicating pitches between the pitcher and
catcher is insufficient. If a batter successfully reaches second base, he has a clear

1

Figure 1: Catcher giving sign for fastball

view of the catcher giving signs to the pitcher. Given that the standard mapping
(1=fastball, 2=curveball, 3=slider, 4=changeup) is known by everybody, he can
then relay the signs to the batter. Standard ways of doing this include placing
his hands on his knees, shuffling his feet, touching his helmet, etc. These details
are less relevant, but the main point is that the pitcher/catcher communication
scheme is no longer secure.

To mitigate this, the pitcher and catcher must modify their communica-
tion scheme such that neither the current batter, or the batter on second base
can determine which pitch will be thrown in advance. They typically do this
using an encryption-like scheme that is designed to hide the value of the pitch
from the batter on second base. There are a number of such schemes, most
of which use a sequence of hand signs from the catcher to the pitcher. When
we discuss these sequences, we will use the term index to refer to the location
of a number in the sequence. For example, the index of the number 3 in the
sequence 21431 is 4. In order to be consistent and to bound our calculations, we
restricted the number of signs in a sequence for all of the encryption schemes
to 5.

It will be helpful to think about the original value of the pitch (1, 2, 3,
or 4) as the plaintext message, and the sequence of signs as the ciphertext. To
be clear, the schemes used by the pitcher and catcher to securely communicate
pitch values are not encryption schemes in the traditional sense. They do not
use mathematical keys to decrypt, instead the keys are simply knowledge of the
encryption algorithm, which allows the pitcher to invert the encoding to retrieve
the original pitch value. In order to be usable in an actual baseball game by the
pitcher and catcher, these schemes must have a few characteristics:

1. They must be non-deterministic, since the catcher will be encrypting the
same plaintext many times

2. They must be simple to “decrypt” by the pitcher, since he only has a

2

couple of seconds to invert the encryption and decide if he wants to throw
that pitch

We can formalize this problem as a Chosen Plaintext Attack security analysis
on the encryption-like schemes used by a pitcher and catcher to communicate
pitch information. We consider two different scenarios:

1. Consider the adversary to be any member of the opposing team on second
base. Let n represent the number of times an adversary reaches second
base. If we assume the average at-bat is approximately 5 pitches, the
adversary will get to see 5n (ciphertext, plaintext) pairs to use to crack
the scheme.

2. Consider an adversary watching recorded replays of a team’s games. If
the team uses the same scheme from game to game (which teams do), the
adversary has essentially a limitless pool of (ciphertext, plaintext) pairs
to use to crack the scheme.

In the above scenarios, the adversary sees both the encryption sequence gener-
ated by the catcher, and the decrypted plaintext in the form of the pitch that
gets thrown.

In this paper, we will do a mathematical analysis on the relative hiding
capabilities of 9 of these schemes. We will then combine our analysis with a
scoring of each of the schemes using some homegrown metrics such as usability
and (in)consistency between at-bats. These terms will be given more context
later. To help compare and rank the different schemes, we will also present
a neural network that is trained to make predictions about pitch values given
ciphertext inputs. Using what we learn from this analysis, we will develop our
own pitch-encoding scheme and present that at the end.

Before we dive into the details of the metrics, there are a few more defi-
nitions that will make the following analysis much easier to digest for a reader
without baseball-specific knowledge. First, the basic unit of a pitcher/catcher
face-off is an at-bat. Each batter takes one at-bat at a time against the pitcher.
Within an at-bat, we refer to the count, which indicates the state of the at-bat
by tallying the number of balls and strikes the pitcher has thrown. A pitcher
can throw up to 4 balls or 3 strikes in an at-bat, whichever comes first.

2 Defining the Metrics

There are many aspects to each scheme that can make it more or less secure.
From being easy for the pitcher and catcher to understand to being tough for
the opposing team to crack, there are many factors and scenarios to consider.
We have come up with five metrics to help quantify the security and practicality
of each scheme

• Usability - whether the pitcher can instantaneously determine the pitch
from the catcher’s signs with minimal thinking

3

• Hardness - how many at-bats an adversary needs to see to be able to
accurately predict the pitch

• Inconsistency - the variation of the scheme between pitches

• Encodablility - the number ways a given pitch can be encoded

• Decodability - the number combinations a scheme has if the adversary
knows the scheme (number of variations of the specific rule based on pa-
rameters that are set beforehand by catcher and pitcher)

2.1 Usability

Some schemes require little to no thinking from the pitcher to decrypt the pitch
from the catcher. The easier the transfer of knowledge is, the less likely it is that
a miscommunication or misinterpretation will occur. For example, if the pitch
is always the first sign, the pitcher simply has to look for that first sign and
can ignore the rest of the scheme. On the other hand, a scheme like counting
the number of 1s in a series of signs requires the pitcher to see all the signs
and perform a calculation on that value. Thus, the key difference in usability
is whether or not the pitcher has to observe all the signs to decrypt the code or
if he simply needs to wait for one sign of the sequence. We say a scheme has
usability 0 if it does the former and usability 1 if it does that latter.

2.2 Hardness

The longer it takes to crack a scheme, the harder that scheme is by our definition.
To objectively obtain a measure of how hard a scheme is to break, we built a
MLP Classifier (Multi-layer Perceptron) neural network and observe the number
of at-bats necessary in the training set for the model to learn to accurately
predict a pitch from a given sequence. We built a generator function for each
scheme that randomly picked sequences of length 5, and identified what the
correct pitch should have been if each of those sequences was shown to a pitcher.
We ensured that the probability that the sequence would correspond to a given
pitch was equal across all four potential pitches. These sequences of signs, each
appended by the number of outs, pitch count (balls and strikes), jersey number
and whether the batter is left or right-handed at the time the sequence was
given, constituted an input vector to the model. The output label for each input
vector was simply the pitch that this sequence corresponded to (the pitch that
should have been thrown). We trained each scheme’s model on varying training
set sizes, and deemed a scheme to be ”cracked” when the neural net could
consistently achieve over 80% accuracy on the test set. So for each scheme, its
hardness metric is equivalent to the number of at-bats necessary for our neural
net to ”crack” it.

As a basic overview, a neural network iteratively trains/learns on a train-
ing data set, and its performance is measured on a test data set of which it has
not seen any of the data. In the training set, it is given many data points, each

4

of which has an input vector of features to learn from, and a corresponding
output label. In the test set, it is only given features and must make a prediction
of the output label, and the percentage of the test set that it correctly predicts
is its accuracy.

An at-bat was the granularity we used to determine the hardness of a
scheme, and we generated a random sequence for each pitch in the at-bat. Each
pitch has a 50% probability of being a strike or ball, and the at-bat ends when
there are either 4 balls accumulated or 3 strikes, and we start the next at-bat
from a 0-0 count. The reason we choose to use the at-bat as our smallest unit of
granularity was because some of the schemes we analyze change the rule every
at-bat, not every pitch, and we wanted to capture the same encoding rules in
the same unit of measurement.

We trained our model incrementally, in order to best pinpoint the number
of at-bats needed in the training set (size of the training set) to achieve a
prediction accuracy of 80% in the test set which was of equal size. More tangibly,
we first trained a classifier with 2 generated sequences using the scheme in
question, then 3, then 4, and so on, until we reached a point where 10 consecutive
training set sizes yielded test accuracy over our 80% threshold once trained. The
80% threshold was derived from the fact that the expected value of pitches in
an at-bat under our scheme was 5, and we considered the neural network to
have ”cracked” the scheme successfully if it accurately predicts all but one of
the pitches thrown in a standard at-bat (4/5). Further, we searched for the
first sequence when 10 models in a row attained satisfactory training accuracy
because since we restarted the training of each model from scratch, there was
significant variation between trials that differed by 1 in the number of at-bats
in the training set, and we wanted a meaningful measure of hardness, not one
that would be widely subject to random variations.

2.3 Inconsistency

Another metric that is important to consider is the inconsistency a scheme
shows between pitches and at-bats. While a neural network does not make a
distinction between consecutive pitches and pitches thrown very far apart, the
limited memory of humans makes pitches thrown next to each other much more
prominent. So when cracking a scheme, variability in the scheme from pitch
to pitch and at-bat to at-bat will make it harder to decrypt. We give schemes
with variance between pitches in an at-bat a Pitch Inconsistency of 1 and those
without a Pitch Inconsistency of 0. Similarly, schemes that change between
at-bats get an At-Bat Inconsistency of 1 and those that don’t get an At-Bat
Inconsistency of 0.

2.4 Encodability

Schemes start to break down when the opposing team recognizes a pattern
between the pitch and signs each time a type of pitch is thrown. When asked to
throw a specific pitch, the catcher has options of different sequences to encode

5

the pitch with because the schemes are non-deterministic. The more ways a
pitch can be encoded, the more secure it is because the same series of numbers is
not being used over and over to communicate a pitch. Recall that a deterministic
encryption scheme is a scheme in which a given plaintext is always encrypted
to the same ciphertext. For a catcher looking to encrypt the same pitch many
different times throughout the course of a game, determinism is bad. Therefore,
we evaluate a measure of how non-deterministic a given scheme is by giving
each scheme an Encodability metric equivalent to the average number of ways
it can encode a given pitch.

2.5 Decodability

When the opposing team (the adversary) believes that they might have cracked
one part of the code, they must then figure out exactly what the scheme is. For
example, the adversary may suspect that the scheme involves counting a cer-
tain number but they then have to determine which number is being counted.
A higher number of possible schemes can delay the opposing team from deter-
mining exactly what the scheme is. It might even be confusing enough that the
adversary believes its hunch is incorrect and moves on to other ideas. Thus,
we give each scheme a Decodability metric equivalent to the number of possible
combinations of schemes once the core idea of the scheme is discovered.

3 Scheme Analysis

From both scheme research and our own experiences, we have compiled a list
of nine schemes that are commonly used in baseball. For each one, we will
calculate each of the metrics we discussed in the previous section.

3.1 No Encoding

In this scheme, a single sign indicates the pitch to be thrown. Examples are
shown below below.

2 → 2
1 → 1
3 → 3

It is very usable because the pitcher only looks for that one sign for a usability
of 1. It has a hardness metric of 4 because an adversary simply needs to see
each of the four pitches once to reliably predict future pitches. It is has no
inconsistency because the pitch is always just a single sign so pitch and At-Bat
Inconsistency scores of 0. When encoding any pitch, there is only 1 way to do
so for an Encodability of 1 and if the opposing team catches on, there is only 1
way this scheme could be constructed for a Decodability of 1.

6

Usability: 1
Pitch Inconsistency: 0
Encodability: 1

Hardness: 4
At-Bat Inconsistency: 0
Decodability: 1

3.2 Constant Index

For this scheme, the pitcher and catcher choose a sign index (first, second, third,
fourth, or fifth index) where that index in the sequence of signs is always used.
Below are examples for when we are using the second sign index.

12345 → 2
12433 → 2
31224 → 1

This scheme is usable because the sign index is known so the pitcher simply
has to wait to see the sign at that index for a usability of 1. Our neural net
found it took 90 at-bats to crack the constant index scheme, as shown in the
graph in Figure 2. Since we always use the same index for each pitch and each
at-bat, the inconsistency score for both is 0. For Encodability, the catcher has
a predetermined pitch he wants to throw so he simply needs to sign that pitch
at the agreed-upon index in the sequence. For the other four signs, the catcher
can put down whichever numbers he wishes which means this scheme has a
total of 44 = 256 encodings. For Decodability, given that the adversary knows a
constant index is being used, the index could be the first, second, third, fourth,
or fifth index for 5 total decodings.

Usability: 1
Pitch Inconsistency: 0
Encodability: 256

Hardness: 90
At-Bat Inconsistency: 0
Decodability: 5

3.3 Righty/Lefty

In this scheme, the pitcher and catcher encrypt pitches depending on whether
the batter is left handed or right handed. Below are examples where a right
handed batter indicates a first sign index and left handed batter indicates a
second sign index. Consider a right handed batter and the following ciphertext
encodes 2=curveball:

23412 → 2

If it was a left handed batter it encodes 3=slider for the same ciphertext:

23412 → 3

This scheme is usable because the sign index is known after the pitcher de-
termines the right or left handedness of the batter, yielding a Usability of 1.
Our neural net found it took 138 at-bats to crack the Righty/Lefty scheme, as
shown in the graph in Figure 3. Assuming players do not switch bat hand-
edness, the pitcher will be using the same sign index between pitches so the

7

Figure 2: Accuracy of MPLClassifier model on Predicting Pitch given by Con-
stant Index Scheme. 90 at bats is the critical point at which the accuracy of
the network surpasses 80% by our definition above. Specifically, it is the first at
bat at which a sequence of 10 consecutive trained models exceed this threshold
test accuracy.

Pitch Inconsistency is 0. Between at-bats, different batters may have different
bat handedness which changes the index the pitcher is looking for. This means
that At-Bat Inconsistency is 1. For number of encodings, we could have either a
right or left handed batter for 2 combinations for selecting the sign index. Given
that sign index, the catcher can put down whichever numbers he wishes for the
other four signs in the sequence for 44 encodings per sign index. This yields a
total of 2 ∗ 44 = 512 encodings. For decodings, even if an adversary knows the
scheme uses bat handedness, there are still 20 different possible schemes. This
is because right handedness could be associated with any of the five indices and
then there are four indices for which left handedness could be associated with
for 5 ∗ 4 = 20 decodings.

Usability: 1
Pitch Inconsistency: 0
Encodability: 512

Hardness: 138
At-Bat Inconsistency: 1
Decodability: 20

3.4 ABE

The ABE scheme is an acronym for Ahead-Behind-Even, which refers to different
states in the current count from the pitcher’s perspective. A count is considered
”ahead” if there are more strikes than balls (0-1, 0-2, 1-2), ”behind” if there are
more balls than strikes (1-0, 2-0, 3-0, 2-1, 3-1, 3-2), or ”even” if there are equal
numbers of balls and strikes (0-0, 1-1, 2-2). Now, an ”ahead” count maps to

8

Figure 3: Accuracy of MPLClassifier model on Predicting Pitch given by the
Righty/Lefty Scheme. The critical number of at bats (measure of hardness) is
138.

the first index in the sequence, ”behind” maps to the second index, and ”even”
maps to the third index. In a simpler representation: A(head)=1, B(ehind)=2,
E(ven)=3. Below is an example encoding that corresponds to 4=changeup for
a count with 1 ball and 2 strikes:

41223 → 4

And another example corresponding to 1=fastball for a count with 2 balls and
2 strikes.

32124 → 1

For Usability, ABE scores well because the pitcher can precompute the index for
which he needs to look in the sequence. Before throwing the pitch, the pitcher
knows the count, and therefore he also knows whether the count is considered
”ahead”, ”behind”, or ”even” so he simply needs to look for the first, second,
or third index in the sequence. The neural network used 384 at-bats to reliably
predict pitches encoded under the ABE scheme, as shown in Figure 4. From
here on, we will not explicitly reference the figure in which the hardness of a
scheme is depicted, but all figure are captioned and can be matched by the
reader.

For Pitch Inconsistency, the ABE encryption scheme changes with each
pitch, so it gets that point. Since the sequence of counts an adversary would
observe changes from at-bat, ABE also gets the point for At-Bat Inconsistency.
The Encodability for ABE can be calculated similarly to Righty/Lefty. For
any given pitch, the count could be ahead, behind, or even with each scenario
corresponding to one of three pitch indices. From that index, the catcher has
four other signs in the sequence to choose for 44 encodings per sign index and a

9

total of 3 ∗ 44 = 768 encodings. When calculating Decodability, we can assume
the adversary knows the scheme uses ABE. However, he does not know which
sign index each of A, B, and E corresponds to. We have five indices to associate
A with, then four indices left to associate B with, and finally three indices for
E for a total of 5 ∗ 4 ∗ 3 = 60 decodings.

Figure 4: Accuracy of MPLClassifier model on Predicting Pitch given by the
ABE Scheme. The critical number of at bats (measure of hardness) is 384.

Usability: 1
Pitch Inconsistency: 1
Encodability: 768

Hardness: 384
At-Bat Inconsistency: 1
Decodability: 60

3.5 Outs+1

Outs+1 is another scheme which uses external information to communicate the
index at which the pitch value is located. In this case, the pitcher and catcher
add 1 to the current number of outs (zero outs=1, one out=2, two outs=3)
to determine the sign index. Here’s an example encoding with two outs for
2=curveball:

11231 → 2

Another example with 1 out encoding 3=slider:

23241 → 3

Again, Outs+1 scores well for Usability because all of the required information
can be precomputed by the pitcher. He knows the number of at-bats before he
receives the ciphertext from the catcher, so he knows exactly which index to

10

look for. The Outs+1 scheme received a hardness score of 270 from our neural
network. Now, since the number of outs generally stays the same throughout
an individual at-bat, the Outs+1 scheme does not get the point for Pitch In-
consistency. It does, however, get At-Bat Inconsistency because the number of
outs generally varies from at-bat to at-bat. Encodability for Outs+1 is almost
identical to ABE in that there are three possible pitch indices and 44 encodings
per sign index for a total of 3 ∗ 44 = 768 encodings. Decodability is also ex-
tremely similar as there are five possible pitch indices three of the indices must
correspond to zero outs, one out, and two outs. As in ABE there are 5∗4∗3 = 60
ways for this to happen for a Decodability of 60.

Figure 5: Accuracy of MPLClassifier model on Predicting Pitch given by
Outs+1 Scheme. The critical number of at bats (measure of hardness) is 270.

Usability: 1
Pitch Inconsistency: 0
Encodability: 768

Hardness: 270
At-Bat Inconsistency: 1
Decodability: 60

3.6 Jersey Number

For this scheme, the pitcher and catcher observe the jersey number of the batter
and take it modular 5. The resulting value will determine the sign index for
this at-bat (note: any number that would be 0 (mod 5) will be correspond to
the fifth pitch because there is no zeroth pitch). Consider an example where
the batter’s number is 9. Since 9 (mod 5) = 4, his at-bat will use the pitch at
the fourth index:

12235 → 3

In another example, let the batter be number 20. With 20 (mod 5) = 0, we will
use the fifth index as shown below:

11

44241 → 1

This scheme gets a 1 for Usability because the pitcher knows what index he is
looking for since he’s already done the jersey number calculation. Our neural
net found it took 1135 at-bats to crack the Jersey Number scheme. This scheme
has a Pitch Inconsistency of 0 since the index being used is set for each at-bat
based on the batter’s number. However, it has an At-Bat Inconsistency of
1 because every batter has a different number and we will see different indices
between batters when their numbers yield difference values when taken modular
5. The Encodability of this scheme is the highest of any scheme we’ve looked
at. Since the sign index used can range from the first sign to the fifth sign,
there are possible pitch indices and 44 encodings per sign index for a total of
5 ∗ 44 = 1280 encodings. Given that the adversary knows that the pitcher and
catcher are using a Jersey Number scheme, the only way to alter the scheme
is to change what we are taking modular 5. The only schemes that could be
possible decodings are JerseyNumber (mod 5), JerseyNumber + 1 (mod 5),
... , JerseyNumber + 4 (mod 5) for a total of 5 decodings.

Figure 6: Accuracy of MPLClassifier model on Predicting Pitch given by the
Jersey Number Scheme. The critical number of at bats (measure of hardness)
is 1135.

Usability: 1
Pitch Inconsistency: 0
Encodability: 1280

Hardness: 1135
At-Bat Inconsistency: 1
Decodability: 5

3.7 Follow the Leader

This scheme gets its name because the basic idea is that the number shown in
the first index determines which of the subsequent indices represents the value
of the pitch. If the catcher shows a 2 as the first sign, the pitcher then counts

12

the next two signs and knows that that second sign is the pitch value. Here are
some examples:

24132 → 1
41232 → 2
31232 → 3

Follow the Leader does not get the Usability point because the pitcher does
not know which index he needs to look for beforehand. He must wait until he
sees the first sign, and then count the number of subsequent signs. This is more
error-prone than some of the other schemes, especially if the catcher is giving the
signs quickly. The neural network needed to see 675 at-bats in order to reliably
predict pitches using the Follow the Leader scheme. It does, however, get the
points for Pitch Inconsistency and At-Bat Inconsistency because the encoding
is completely determined by the catcher and does not rely on any information
present across pitches or at-bats. For calculating Encodability for this scheme,
we first notice that there are four values to give the first sign that will determine
which index will contain the actual pitch. The actual pitch is determined but
the remaining three signs in the sequence can be chosen by the catcher. There
are 43 = 64 ways to do this for each sign index so there are a total of 4∗43 = 256
encodings for this scheme. The Decodability for this scheme is actually 1. Since
it is so specific, knowing that the first sign indicates the number of pitches to
wait leaves only one possible scheme.

Figure 7: Accuracy of MPLClassifier model on Predicting Pitch encoded using
the Follow the Leader scheme. The critical number of at bats (measure of
hardness) is 675.

Usability: 0
Pitch Inconsistency: 1
Encodability: 675

Hardness: *
At-Bat Inconsistency: 1
Decodability: 1

13

3.8 Chase the 2

The Chase the 2 scheme essentially uses what’s known as an ”indicator”. The
pitcher and catcher agree on a number before the game (or before the inning, if
they want to improve this scheme) and they use that number to sign the value
of the pitch. For example, they could agree to use 2 as the indicator in which
case, the value of the pitch to be thrown is whatever number follows the 2 in
the sequence. They can use any of the four numbers as the indicator. Here’s an
example where the pitcher and catcher are using a Chase the 3 scheme:

21431 → 1

And an example with Chase the 2, where we assume that the first instance of a
2 is used as the indicator:

24123 → 4

As for Usability, the Chase the 2 scheme does not earn that point because
the pitcher does not know the specific index for the encoded pitch value. In
addition, the pitcher has to pay attention to two signs, the indicator and then
the pitch value. Our neural network used 179 at-bats to crack an encoding using
the Chase the 2 scheme. It’s both Pitch Inconsistent and at-bat Inconsistent
because the location of the indicator can change after every pitch. To calculate
Encodability for this scheme, we first notice that there are four indices for the
actual pitch to go where a 2 can precede it. Since the actual pitch and the 2
are deterministic, there are then three other signs to be chosen by the catcher
for a total of 4 ∗ 43 = 256 encodings. Given that the adversary knows the
scheme involves chasing a number, they could either chase a 1, 2, 3, or 4 for a
Decodability of 4.

Usability: 0
Pitch Inconsistency: 1
Encodability: 256

Hardness: 179
At-Bat Inconsistency: 1
Decodability: 4

3.9 Pumps

The Pumps scheme is an interesting scheme that encodes a pitch value by count-
ing the number of ”pumps” in the sequence. The pitcher and catcher agree on
a pump value beforehand, and then the catcher encrypts a pitch by generating
a sequence which includes the pump value exactly the number of times which
corresponds to the pitch they would like to throw. For example, if the pump
is agreed to be 1, and the catcher wishes to encrypt a 3=slider, he will include
three 1s in the ciphertext. Here are some examples to make it more clear. With
a pump value of 1:

12143 → 2
12343 → 1

And an example with a pump value of 4:

14

Figure 8: Accuracy of MPLClassifier model on Predicting Pitch given by Chase
the 2 Scheme. The critical number of at bats (measure of hardness) is 179.

44244 → 4
14344 → 3

The Pumps scheme is not considered Usable because, firstly, the pitcher is not
simply looking for a location in the sequence which represents the pitch value,
and, secondly, the pitcher needs to count the number of instances of the pump
value. Basically, the Pumps scheme can not be precomputed before the cipher-
text is seen. This scheme does fairly well against our neural net, requiring 801
at-bats before reliably predicting pitches. Pumps gets both Pitch Inconsistency
and At-Bat Inconsistency points because it does not rely on any repeating infor-
mation across pitches. The Pumps scheme requires us to calculate the encodings
for each pitch and then average the expected number of encodings. If the pitch
is a fastball and we need the sign sequence to contain just one 1, there are

(
5
1

)
ways to place that 1. The other four sign of the sequence can be another number
that is not a 1 for 34 = 81 possibilities. This means that there are

(
5
1

)
∗81 = 405

ways to encode a fastball. The logic is similar for the other pitches. For a
curveball with two 1’s, we have

(
5
2

)
to place the ones and 33 possibilities for the

rest of the numbers for
(
5
2

)
∗ 33 = 270. With three 1’s, we have

(
5
3

)
to place the

ones and 32 for the rest for
(
5
3

)
∗ 32 = 90 and with four 1’s, we have

(
5
4

)
to place

the ones and 31 for the rest for
(
5
4

)
∗ 31 = 15. Averaging over the four pitches

yields an expected value of (405 + 270 + 90 + 15)/4 = 195 encodings for the
Pumps scheme. Just as with Chase the 2, if the adversary knows the scheme
involves counting a digit, they could count either 1, 2, 3, or 4 for a Decodability
of 4.

15

Figure 9: Accuracy of MPLClassifier model on Predicting Pitch given by the
Pumps Scheme. The critical number of at bats (measure of hardness) is 801.

Usability: 0
Pitch Inconsistency: 1
Encodability: 195

Hardness: 801
At-Bat Inconsistency: 1
Decodability: 4

4 Evaluation Equation

4.1 Normalization of Metrics

After analyzing the Usability, Hardness, Inconsistency, Encodability, and De-
codability of these nine schemes, we look to develop an equation that could give
an overall score to each scheme. This score allows us to quantitatively compare
the effectiveness of one scheme versus another. We look to create a weighted
linear equation where the Scheme Score is comprised of the normalized metrics
where each wk is a weight reflecting the importance of each metric:

SS = w1U + w2H + w3PI + w4API + w5E + w6D

To use this equation, we first took a table of our raw metric scores and then
normalized by dividing each metric by the maximum of that metric across all
nine schemes. Our reason for normalizing over the maximum ensures that each
metric would be on the same 0 to 1 scale and the weights will take care of the
differences in the importance of each metric to the overall scheme score. Table
1 below shows the raw scores and Table 2 has each data point divided by the
maximum value of its given metric.

16

Table 1: Raw Metric Data of Schemes
Scheme Use Hard Pitch At Bat Enc Dec

No Encoding 1 4 0 0 1 1
Constant Index 1 90 0 0 256 5
Righty/Lefty 1 138 0 0 512 20

ABE 1 384 1 1 768 60
Outs+1 1 270 0 1 768 60

Jersey Number 1 1135 0 1 1280 5
Follow the Leader 0 675 1 1 256 1

Chase the 2 0 179 1 1 256 4
Pumps 0 801 1 1 195 4

Table 2: Normalized Metric Data of Schemes
Scheme Use Hard Pitch At Bat Enc Dec

No Encoding 1 0.004 0 0 0.001 0.017
Constant Index 1 0.079 0 0 0.2 0.083
Righty/Lefty 1 0.122 0 0 0.4 0.333

ABE 1 0.338 1 1 0.6 1
Outs+1 1 0.238 0 1 0.6 1

Jersey Number 1 1 0 1 1 0.083
Follow the Leader 0 0.595 1 1 0.2 0.017

Chase the 2 0 0.158 1 1 0.2 0.067
Pumps 0 0.706 1 1 0.152 0.067

4.2 Adjusting Weights

In order to have an appropriate equation that properly takes each metric into
account, we must select weights that reflect the importance of the metric to
the overall security of a scheme. Weights can be customized for each coach’s
preferences but we have looked to create weights that are both unbiased and
relevant to the context of each metric.

When analyzing Usability, we recognized that the difference between a 0
and a 1 was whether or not the pitcher had to observe all the signs to decrypt
the code or just one sign. However, having to see all versus one of the signs
does not make a scheme unusable, just slightly more error prone. While it is
nice for a pitcher to have a little less to think about when reading signs, it is
not as important as the security of the scheme. In reality, teams use some of the
schemes we have given a 0 in Usability. Since our 0 for Usability means harder
to use and not unusable, we are giving Usability a weight of 1

3 .
We feel that hardness is one of the most reliable metrics we have created.

The simplicity in the creation of the neural net provides an unbiased approach
to how long it will take to crack a scheme. In order to provide additional
separation for schemes of varying hardness, we have chosen to increase the

17

weight of Hardness to 2.
For the rest of these schemes, we found it difficult to provide a strong

argument that one was more important than another. Both Pitch and At Bat
Inconsistency can cause a scheme to be broken if a pattern is allowed to emerge.
In addition, Encodability and Decodability can mask the secret and it feels
necessary to reward schemes that have more random noise to throw off the ad-
versary. As a result, we decided to keep the weights for these last four categories
at 1. This gives us a final equation of:

SS = 1
3U + 2H + PI + API + E + D

4.3 Ranking of Schemes

Now that we have an evaluation equation, we can deduce a ranking for our nine
schemes. Adding a Score column to a weighted data table below allows us to
see the components that sum to each scheme’s score.

Table 3: Weighted Metric Data and Scheme Score Calculation

Scheme Use Hard Pitch At Bat Enc Dec Score Rank

No Encoding 0.333 0.007 0 0 0.001 0.017 0.358 9
Constant Index 0.333 0.159 0 0 0.2 0.083 0.775 8
Righty/Lefty 0.333 0.243 0 0 0.4 0.333 2.310 7

ABE 0.333 0.677 1 1 0.6 1 4.610 1
Outs+1 0.333 0.476 0 1 0.6 1 3.409 4

Jersey Number 0.333 2 0 1 1 0.083 4.417 2
Follow the Leader 0 1.189 1 1 0.2 0.017 3.406 5

Chase the 2 0 0.315 1 1 0.2 0.067 2.582 6
Pumps 0 1.411 1 1 0.152 0.067 3.630 3

We can then rank and plot these scores to see how they compare to one
another. We see that the ranking of schemes (most effective to least effec-
tive) is ABE, Jersey Number, Pumps, Outs+1, Follow the Leader, Chase the
2, Righty/Lefty, Constant Index, and No Encoding. Another interesting ob-
servation is that there are clear-cut clusters of schemes such that the top two
schemes (ABE, Jersey Number), have decent separation using the score from the
next three schemes (Pumps, Outs+1, Follow the Leader), which have scores in
a much different range than the next two schemes (Chase the 2, Righty/Lefty),
and the last two schemes (Constant Index and, No Encoding) have a score way
below all the others.

The schemes at the top of the ranking make sense to us. Since ABE is
based on the current count, it is constantly changing and hard to decrypt. In
addition, ABE has a great Inconsistency metric and a large number of possible
encodings and decodings. Jersey Number also does well because by making
it possible to have the actual pitch hidden at any of the five sign indices, the
variation between at-bats greatly changes.

18

The next three schemes are all pretty secure but have a flaw that keeps
them from being a top scheme. With both Follow the Leader and Pumps, we
see that they are hard to crack due to their complexity. However, since these
schemes are based off of only the sequence of signs and not at all on the external
factors of the game, they become very easy to decrypt once a pattern emerges
to the adversary. Outs+1 struggles from being predictable over pitches and
innings. It’s not a top-tier scheme since each at bat uses the same scheme and
the outs go from 0 to 1 to 2 each inning.

The next two schemes, Chase the 2 and Righty/Lefty lack complexity
and thus struggle compared to other schemes. Chase the 2 has little variation
because it requires a 2 in every sequence, and Righty/Lefty is essentially only
scrambled by a binary variable, the handedness of the batter.

The last two schemes are correctly at the bottom of our ranking. As our
base cases, Constant Index and No Encoding are both expected to be very easily
decrypted.

Figure 10: Graph of scheme scores calculated from our evaluation equation

5 Our Scheme

To create our optimal scheme, we looked to take the best elements from the
schemes we’ve seen. We wanted a scheme that was usable, difficult to crack,
and appears as randomized as possible. To achieve this, we look to devise a
scheme that could be in any of the five pitch indices like Jersey Number and
also varied on every pitch like ABE. At the same time, the scheme had to be
simple enough as to not confuse pitchers or catchers with things like tricky math.

19

5.1 Jersey Parity + Num Balls

To achieve the best, across-the-board metrics we combined the uniqueness of the
batter’s jersey number with a factor that changes with every pitch, the number
of balls in the current count. This scheme is a direct mapping from the parity
of the batter’s jersey number summed with the number of balls in the current
count. We map odd-numbered jerseys to 1, and even-numbered jerseys to 2.
Then, we sum that number with the number of balls in the current count which
varies from 0 to 3 to give us a final value in the range 1 to 5. This value is used
as the index in the encryption sequence. Here are some examples with a batter
numbered 27 and 2 outs:

12141 → 1
23413 → 4

And an example with a batter numbered 16 and 0 outs:

42312 → 2

The Usability of our scheme is 1 because the pitcher knows exactly which
index to look for before the signs are shown as jersey parity and number of
balls are predetermined. After altering the step size of our neural net from 1
to 5,000, we were able to approximate a hardness metric of 16,250. Since the
number of balls changes during the at-bat, the sign index can change between
pitches giving us a Pitch Inconsistency of 1. In addition, the parity of the
batter’s number will switch between at bats giving us an At-Bat Inconsistency
of 1 as well. For Encodability, the sign index could be anywhere from 1 to 5 as
discussed above and with four signs for the catcher to freely choose, there are
a total of 5 ∗ 44 = 1280 encodings. For Decodability, given that the adversary
knows that the number of balls and parity of jersey is being used, they still do
not know what mapping odd and even valued jersey numbers have. There are
five ways to choose the mapping for the odd number and four ways for the even
for a total of 5 ∗ 4 = 20 decodings.

Usability: 1
Pitch Inconsistency: 1
Encodability: 1280

Hardness: 16,250
At-Bat Inconsistency: 1
Decodability: 20

We can also plug the metrics of our own scheme into our evaluation equa-
tion. To do so, we must first normalize Hardness, Encodability, and Decodabil-
ity. We will simply normalize Hardness to 1 since it is so much greater than
the rest of the schemes. To normalize Encodability, we divide our scheme’s
Encodability of 1280 by the maximum scheme Encodability of 1280 to get
1280/1280 = 1. We do the same for Decodability to get 20/60 = 0.333. We
then plug our scheme’s normalized metrics into the evaluation equation:

SS = 1
3U + 2H +PI +API +E +D = 1

3 ∗ 1 + 2 ∗ 1 + 1 + 1 + 1 + 0.333 = 5.666.

20

Figure 11: Accuracy of MPLClassifier model on Predicting Pitch given by this
new scheme that we devised (Jersey Parity + Num Balls). The critical number
of at bats (measure of hardness) is about 16,250.

This scheme score is over a point higher then the best of the nine schemes
we tested. While it takes slightly more math to be used in practice, its incredibly
high Hardness and Inconsistency metrics make it extremely secure and thus,
favorable. There may be other creative schemes that can yield similar results
but this was the scheme we found to be both tough to crack and simple to
implement.

6 Conclusion

In summary, we have presented a novel, proof-of-concept analysis of 9 of the
most common methods of communication between the pitcher and catcher in
the game of baseball. We have framed the problem as a cryptography problem
by thinking of the desired pitch as a plaintext to be communicated from a
catcher to a pitcher, and the sequence of signs given by the catcher as the
corresponding ciphertext. Our adversary is a member of the opposing team or
somebody trying to gain a competitive advantage in knowing which pitch will
be thrown beforehand. We have assumed that our adversary has access to an
arbitrary number of plaintexts and their corresponding ciphertexts, possibly by
watching replays of the scheme being executed.

We have also used what we learned in our analysis of those 9 commonly
used schemes to generate our own scheme, dubbed Jersey Parity + Number of
Outs, which outscores all of the other schemes.

For those wondering how likely and/or realistic it is for an adversary to go
to such great lengths to crack these schemes, we leave you with a few (perhaps,

21

comical) examples from the history of sign stealing in the game of baseball.
In 1948, Hall of Fame pitchers Bob Feller and Bob Lemon set up a relay

system using a military-grade gun sight to view the catcher giving signs to the
pitcher. With this hack, they ended up winning 19 of their last 24 games to
clinch a playoff berth.

In the 1950s, Comiskey Park in Chicago was outfitted with a scoreboard
that had a platform from which an employee with binoculars could spy on the
opposing catcher, but a hidden light – visible by the batter – that flashed in
accordance with the upcoming pitch.

Although our analysis is not a cryptanalysis in the truest sense, we hope
that our work can be viewed as a unique and novel proof of concept, especially
for those with a penchant for baseball.

7 Appendix

Below is an example of the code file that we used to generate sequences for
the ABE scheme. This file generates random sequences, determines what the
actual thrown pitch would have been, and simulates the at bats and innings in a
baseball game. Further, it takes as argument numAtBats, and iterates through
all possible dataset sizes from 2 to the value of numAtBats. It trains a neural
network based from half the number of at bats, and tests it on the other half. We
pick the value at which the average of 10 consecutive neural network trainings
first exceeds our threshold of 0.8. We have a similar file for each of the 9 schemes
(including our new one, but excluding the no encoding scheme). We then graph
all this data and use this graph in the figures throughout this paper. All the
other code from the project resembles the same structure as from this scheme
and can be found at: https://github.com/maxlancaster/857-final-project.

import random
import matp lo t l i b . pyplot as p l t
import matp lo t l i b . axes
from s k l ea rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t
from s k l ea rn . neura l network import MLPClass i f i er

de f abeGenerator (b a l l s , s t r i k e s , scheme , outs) :
sequence = []
f o r i in range (5) :

sequence . append (random . rand int (1 , 5))
ac tua lP i t ch=0
i f b a l l s >s t r i k e s :

a c tua lP i t ch = sequence [scheme [1]]
e l i f s t r i k e s >b a l l s :

a c tua lP i t ch = sequence [scheme [0]]
e l i f s t r i k e s==b a l l s :

a c tua lP i t ch = sequence [scheme [2]]
sequence . append (b a l l s)

22

sequence . append (s t r i k e s)
sequence . append (outs)
re turn sequence , a c tua lP i t ch

de f p i t ch (count) :
r e s u l t=random . rand int (0 , 1)
count [r e s u l t]+=1
return count

de f generateData (atBats) :
scheme = [0 , 1 , 2]
data = []
a c t u a l P i t c h e s =[]
outs=−1
f o r i in range (atBats) :

count = [0 , 0]
outs += 1
i f outs==3:

outs = 0
whi le count [0] ! = 4 and count [1] ! = 3 :

abe=abeGenerator (count [0] , count [1] , scheme , outs)
data . append (abe [0])
a c t u a l P i t c h e s . append (abe [1])
count = pi t ch (count)

re turn data , a c t u a l P i t c h e s

numAtBats=900
X, y = generateData (numAtBats)
X train , X test , y t ra in , y t e s t = \

t r a i n t e s t s p l i t (X, y , t e s t s i z e =0.5)
c l f=MLPClass i f i er ()
c l f . f i t (X train , y t r a i n)
p r i n t numAtBats , c l f . s c o r e (X test , y t e s t)

datapo int s =[]
f o r i in range (2 , numAtBats) :

X, y = generateData (i)
X train , X test , y t ra in , y t e s t = \

t r a i n t e s t s p l i t (X, y , t e s t s i z e =0.5)
#pr in t X train , X test , y t ra in , y t e s t
c l f=MLPClass i f i er ()
c l f . f i t (X train , y t r a i n)
datapo int s . append ((i /2 , c l f . s c o r e (X test , y t e s t)))
p r i n t i , c l f . s c o r e (X test , y t e s t)

f i g , ax = p l t . subp lo t s ()
p l t . p l o t (∗ z ip (∗ datapo int s))

23

ax . axh l ine (y=0.8 , c=’r ’)
ax . s e t x l a b e l (”Number o f At−Bats Seen ”)
ax . s e t y l a b e l (” Pitch Pred i c t i on Accuracy ”)
ax . s e t t i t l e (” Neural Network Learning /Decoding o f ABE Scheme ”)
384 at−bats needed
p l t . show ()

24

