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1 Introduction 
To keep radio communications secure during World War II, forces on both sides of the war                
relied on encryption. The main encryption scheme used by the German military for most of               
World War II employed the use of an Enigma machine. As such, Britain employed a large                
number of codebreakers and analysts to work towards breaking the Enigma-created codes, using             
many different methods. In this paper, we lay out information we learned while researching these               
methods, as well as describe our attempts at programatically recreating two methods: Zygalski             
sheets and the Bombe. 
 

2 The Enigma Machine 
The Enigma machine was invented at the end of World War I, by a German engineer named                 
Arthur Scherbius. It was commercially available in the 1920s before being adopted by the              
German military, among others, around the beginning of World War II. The commercial version              
of the Enigma machine was composed of three rotors, a reflector wheel, a keyboard, and an array                 
of lights laid out like the keyboard. Each of the three rotors had 26 contacts on each side, and a                    
unique internal wiring which connected contacts to each other These contacts represented the 26              
letters in the alphabet and the connections mapped one letter to another. The reflector wheel was                
mounted on the end of the machine to the left of the three rotors and connected pairs of contacts                   
on the leftmost rotor to each other. Pressing a key on the keyboard would cause current to flow                  
through the circuit which went from the key, through the contacts on the rotors and reflector                
wheel, back through the rotors in the opposite direction, and then to a lightbulb. This circuit                
created a complex substitution cipher that would change whenever a key was pressed. Pressing a               
key would cause one or more rotors to rotate one step, changing where the rotor contacts were                 
connected. Each letter of the ciphertext was thus enciphered with a different substitution cipher,              
mimicking the effect of a one-time pad. It is important to note that this encryption process is                 
symmetric (to decrypt a ciphertext, the ciphertext just had to be encrypted again) and a letter                
could be never encrypted to itself (since the reflector never connected a letter to itself, the letter                 
must travel back through a different path than the one through which it came to the reflector). 

The German military adapted the commercial Enigma machine before World War II,            
changing which rotors were used and adding 2 more. In addition, the rotors in the military                
Enigma machine were able to be swapped: any 3 of the 5 rotors could be used, in any order                   
creating 60 combinations of rotor orders. Each of the 5 rotors had an inner alphabet ring attached                 
to the center wiring that could be rotated independently from the rotor housing and outer               
alphabet ring. This added another factor of 26 possible combinations per rotor and the position of                
the inner alphabet ring was called the “ring setting.” In addition to the changes to the rotors, a                  
plugboard was added that was inserted between the rotors and the keyboard and light assembly.               
This plugboard, “steckerbrett” in German and known as a “steckerboard” by British            



codebreakers, had 26 sockets, one for each letter in the alphabet. A wire would be plugged into                 
two letters’ sockets which would swap the letters when going into the rotors from the keyboard                
and out of it to the lightboard. The German practice after January 1939 was to connect 10 pairs                  
of letters on this plugboard, or “steckering” the two letters together, and leave 6 letters               
unconnected, or the letters were “self-steckered.” 

The rotors moved in order to introduce a different substitution cipher for every keypress.              
Each rotor has a notch at one letter called a “turnover point.” When the turnover point was                 
reached, the notch would engage a device that would, on the next key press, rotate the rotor to                  
the left by one letter. The action of causing the other rotor or “step” to move was called a                   
“turnover.” Thus, the rightmost rotor stepped with every key press; the middle rotor stepped once               
with every full rotation of the right rotor, so every 26 key presses, and the leftmost rotor stepped                  
once with every full rotation of the middle wheel, every 676 key presses. In addition, the middle                 
rotor would step once whenever the leftmost rotor stepped which only happened when the              
middle rotor steps so this would cause a “double step.” 

There were a few other versions of Enigma machines developed throughout the war,             
including a four-rotor variant, a variant with a configurable reflector wheel, and a variant where               
the reflector wheel also rotated. We will focus on the version described above for the rest of this                  
paper. 

 

2.1 Encryption and Decryption Process 
The machine itself was only one part of the encryption process. Because of the many ways to                 
configure the machine before encrypting, the German military followed a precise method that             
was used by every operator. This ensured that communication was secure and that it was               
decryptable by other operators who had the same procedural knowledge. 

There are several configurable settings on the Enigma machine and they were split into              
two categories -- daily settings and per-message settings. Daily settings included which rotors to              
use and the rotor order, the “ring setting” for each rotor, and the plugs on the plugboard. Daily                  
settings were physically disseminated throughout the military monthly. The per-message settings           
were set by the operator who was expected to choose a key to encrypt the message with (we will                   
call this the “message key”), a key to encrypt the message key with (we will call this the                  
“plaintext key”), and one of several “discriminants” which were random letter combinations            
intended to indicate which of the several sets of daily settings were being used (these were                
different for each branch of the German military). Both the message key and the plaintext key                
were used to set the starting positions of the three rotors. 

To encrypt a message, an operator would first set up the Enigma machine with that day's                
daily settings for the specific branch they were operating under. Then, they would choose a               
plaintext key, and set the Enigma machine's rotors to that key. Next, they would choose a                
message key, and encrypt the 3 letters of that message key using their Enigma. Before May 1st,                 



1940, the message key was encrypted twice, resulting in 6 characters of ciphertext. After, the               
message key was only encrypted once, resulting in 3 characters of ciphertext. Once the message               
key was encrypted, the operator would reset the Enigma rotors to the message key, and encrypt                
the rest of the message. The resulting ciphertext, prepended with the 3 (or 6) encrypted               
characters of the message key, would be split into blocks of 5 characters and transmitted over                
radio, combined with a plaintext recipient, the callsign of the transmitter, the chosen             
discriminant, and the plaintext key. 

On the receiving end, an Enigma operator would look at the discriminant to determine if               
the daily settings to which his Enigma machine was set up were the same as the ones the                  
transmitter used. If the settings matched, the message was able to decrypted and the operator               
would proceed by first setting the Enigma's rotors to the transmitted plaintext key. Using this, the                
first 3 (or 6) letters of the ciphertext were decrypted to reveal the message key. The operator                 
would then reset the rotors to the position indicated by the decrypted message key and use the                 
machine to decrypt the body of the message. 
 

2.2 Enigma Weaknesses 
Bletchley Park was the center of code breaking-activity during most of World War II. The most                
important ciphers that were broken there during the war were Enigma and the Lorenz cipher. In                
order to decipher Enigma messages, the daily settings needed to be known. The cryptanalysts              
focused on several different weaknesses to aid in the search for these daily Enigma settings. In                
this section, we'll give a short description of many of the weaknesses they attempted to exploit,                
and in later sections we'll focus on Zygalski sheets and the Bombe, the two exploitation methods                
we focused on for our implementation. 
 

2.2.1 Encrypting the Key Twice 
Before May 1st, 1940, established practice among German operators was to encrypt the chosen              
message key twice, creating a 6 character-long ciphertext that was prepended to the enciphered              
message. While cryptanalysts did not know what key was enciphered, they could draw             
conclusions from the patterns found in those 6 character-long ciphertexts. For example, if the              
same letter (in positions 1 & 4, 2 & 5, or 3 & 6) was enciphered into the same ciphertext letter in                      
both places (e.g. KIEKIE -> AFGPFJ, note the I -> F relation), that would rule out                
approximately 60% of possible ring settings for that day. Given several of these “females”, as               
they were called by Bletchley Park cryptanalysts, one could rule out nearly all ring settings,               
leaving the actual settings for a particular day. More information about this weakness can be               
found in Section 3 on Zygalski sheets, which were created to exploit this. 
 



2.2.2 Cillies 
A surprising number of weaknesses in the Enigma-created ciphers were due to operator misuse.              
Over time, the cryptanalysts at Bletchley Park (and in Poland) noticed many trends that enabled               
them to more easily guess daily settings. One trend was that some expressions were used very                
often; for example, “EINS” (German for “One”) occurred often enough that the people at              
Bletchley Park created an “EINS dictionary” that consisted of all the possible encryptions of              
“EINS.” Messages were also occasionally re-transmitted using different ciphers from other parts            
of the military. If the second cipher that was used was already broken, the plaintext of the                 
message was known and could be used to help find the Enigma settings. In some branches of the                  
military there was also a rule that no rotor could be in the same position two days in a row so if                      
the daily settings for the previous day had been found, the search space for the current day’s                 
settings would be reduced by a fair amount. 

Other weaknesses were due to the practices that operators would often employ. Operators             
tended to use keys that were easily guessable and related the plaintext key to the message key.                 
For example, the keyboard on the Enigma machine was QWERTZ so operators tended to used               
the diagonals as keys. This meant if the plaintext key was “QAY” (the first diagonal), then a                 
good guess for the message key was “WSX” (the second). In addition, for messages that had                
multiple parts, operators would occasionally not enter a new key for each subsequent part of the                
message, leaving the rotors as they were at the end of the previous part and using that as the key.  

Another instance of operator mispractice was with the key used after setting up the              
Enigma machine with the daily settings. When setting the ring setting for a particular rotor, it                
was easiest to hold the indicator up and rotate the alphabet ring to match the ring setting for the                   
day. Then, when the rotors were loaded into the machine, the initial placement of the rotors was                 
usually within a few letters from the ring settings. Instead of choosing a new key, operators                
would sometimes just use what was showing on the rotors for the key (or a key only a few letters                    
away). Using frequency analysis, the ring settings could be determined from the occurences of              
these keys.  

Overall, cillies were surprisingly useful to cryptanalysts in reducing the search space for             
the daily settings. We won’t continue to discuss cillies further because cillies focus on operator               
misuse which is hard to simulate and we focused on other methods to break the Enigma cipher. 
 

2.2.3 The Enigma Machine Itself  
The Enigma machine performed a complex substitution cipher with two main characteristics that             
cryptanalysts used to exploit the Enigma cipher. The first characteristic was that the cipher was               
symmetric (e.g. if “A” maps to “C”, then “C” must map to “A” at the same position in the                   
Enigma machine). The second was that a letter can never map to itself (e.g. if “A” is in the                   
ciphertext, it could not be an enciphered “A”). Both of these properties helped to develop the                
bombe, which we'll discuss later in Section 4. 



 
 

3 Zygalski Sheets 
One of the weakness previously described was that operators (before May 1st, 1940) would              
encrypt the message key twice and include it with the message so the receiving operator could                
decrypt the message, which we’ll refer to as the “indicator” for that given message. For instance,                
if the message key was “ABC”, the operator would encipher “ABCABC”, and the resulting              
ciphertext might be something like “QTPRFI.” However, depending on the ring settings, the             
result might be something like “PSTPWA” where a specific letter in the key was enciphered to                
the same letter twice in the indicator (in this case the “A” was enciphered to a “P” both times). 

This pair was called a “female” where there was a certain letter in the same position in                 
both encrypted versions of the message key. The example above is called a 1,4 female, as the                 
first and fourth characters are identical. Females like this are only possible in roughly 40% of                
initial ring setting configurations so if a female was found in a batch of messages, about 60% of                  
the possible configurations for the ring settings can be ruled out. 

When multiple messages are sent using the same settings, this information can be             
combined to rule out increasingly more possible configurations, until only one configuration            
remains. However, in order to do this, one would need a way of keeping enough information in a                  
way that it can used to rule out impossible setups. [8] 
 

3.1 Using Zygalski Sheets 
The method for accomplishing this is credited to polish mathematician Henryk Zygalski. The             
premise was to create a set of sheets for each rotor order possible (6 at the time since there were                    
only 3 rotor options) and in each set, there would be one for each starting letter. A sheet would                   
have a 26-by-26 grid (for the second and third letters) and a hole was punched at positions where                  
a female could occur. 

A batch of messages would be to used to determine which sheets could be lined up where                 
the set of sheets corresponded to a guess of the leftmost initial ring setting and the rotor order.                  
Once enough sheets (generally 12) were lined up on a lit table, either light would shine through a                  
single hole or no light would shine through. In the former situation, the codebreakers found a                
possible configuration of the ring settings, and could test it. In the latter, the guess of either rotor                  
order or first ring setting was wrong, and they had to try again with a different initial guess. 

This was a very time consuming project: simply making the sheets took a few months               
when there were only 3 rotors. The introduction of 2 additional rotors would have increased the                
work by a factor of 10 (since there would then be 60 possible rotor orders). Even if all the sheets                    
could be manufactured, there were 156 possible guesses for the rotor order and left ring setting.                



This meant the process of lining up the sheets might be repeated about 70 times on average                 
before seeing the correct result. 
 

3.2 Programmatic Replication 
In order to replicate the use of Zygalski sheets in code, we opted not to create the sheets in                   
advance, but instead generate them only when they were needed, while trying to recover the ring                
settings from a set of messages. Due to the advantages of modern computers, and the fact that we                  
do not have to physically punch holes, this process is practically instantaneous. This means that               
ring settings can be recovered very quickly using computers. 

In their physical form, Zygalski sheets were meant to be shifted based on the letters in the                 
indicator. In code, we simulate this by using different ring settings to generate the sheet for each                 
message. To do this, for a given run, we first choose a rotor order and left ring setting. Then,                   
using the first indicator letter, the rotor order, and the ring setting, we generate a Zygalski sheet,                 
here represented as a 2-dimensional array keyed by the second and third letters, by running               
through all the choices of second and third letters and checking if those choices of configuration                
could generate a female. If so, we mark that spot with true. Otherwise, it is marked false. 

For subsequent messages, we generate another sheet with the same rotor order and left              
ring setting, but use different settings for the other two rings, specifically to “offset” it from the                 
first sheet. For example, if our first message had P and Q as its second and third indicator letters,                   
the second had N and B, and the guess being tested had A as the first ring letter, we would use                     
ring settings A, (Z + N - P), (Z + B - Q) to generate the sheet that corresponds to the next                      
indicator. When we lay that sheet on top of the first, we logical and every single entry in the                   
2d-arrays representing the stack of sheets so far and the newly added sheet in order to get a third                   
array representing the resulting stack of zygalski sheets. Anywhere marked true in this stack has               
holes that line up all the way down, allowing light through, and represents a possible               
configuration that would produce the intercepted females. [9] 

If at any point, there are no longer any truthy grid entries, we know that we have made an                   
error, and change to the next rotor order or ring setting and try again. If we evaluate the batch of                    
messages and end up getting only one truthy entry, we have a possible configuration for the ring                 
settings. 
 

3.3 Weaknesses/Problems 
This process cuts away all of the slowness of the manual labor associated with Zygalski sheets.                
The process becomes a matter of seconds, since 156 different iterations of a loop is trivial for a                  
computer, and the calculations for creating Zygalski sheets are not complicated. 



However, the shifts in the use of Enigma to only encipher the message key once               
essentially made this technique useless by removing females. Here, computing power is            
irrelevant, as the information that exposed the configuration settings is no longer available. 
 

4 The Bombe 
Once the Zygalski sheets were no longer useful to Bletchley Park, the cryptanalysts had to come                
up with some other way of determining the daily settings. Alan Turing and Gordon Welchman               
separately came up with the idea for a machine that could very quickly go through all possible                 
settings for a particular rotor order and test a set of logical hypotheses. This set of hypotheses                 
was built upon a “crib”. A “crib” is a word or phrase that was likely to be in a particular                    
encrypted message. This crib was matched with a possible location in the ciphertext and used to                
create a graph where there was an edge for every position a plaintext letter (from the crib)                 
mapped to a ciphertext letter (from the encrypted message). These graphs could have cycles              
(where one letter maps to another that eventually would map back to the first letter) which were                 
useful in using the message to find the Enigma settings. It is this graph, called a “menu”, that                  
would be put into Turing and Welchman's machine (called the “bombe”, after the Polish              
“bomby,” another Enigma-breaking machine) and set to run to find possible Enigma settings. 

The bombe itself was a giant electro-mechanical device, standing approximately 6 feet            
tall, 7 feet long, and 2 feet deep. It consisted of 3 banks of 12 Enigma machine clones; each                   
Enigma clone had 3 rotors, arranged vertically, with the topmost rotor corresponding to the              
rightmost rotor in an Enigma machine. The back of the bombe was a mass of cables, with                 
sockets at the entrance and exit of each Enigma clone, as well as sockets to input and output                  
ports on either side of the bombe. A menu would be connected into the bombe by first setting up                   
several Enigma clones to have offsets specified by the edges in the constructed graph, and then                
connecting the inputs and outputs of those Enigma clones to other inputs and outputs, as               
specified by the menu. Each Enigma clone (and thus its input and output cables) consisted of 26                 
parallel connections.  

A single cable represented a letter in the menu, and thus each of the 26 wires in that cable                   
represented possible plugboard connections for that letter. The bombe was, in short, designed to              
find a trio of ring settings and a set of plugboard assignments that were logically compatible with                 
each other. The user would input a guess into the bombe by flipping on one of the switches on                   
the input side, connecting the input letter to another letter indicating some plugboard pair (e.g.               
“A” maps to “H”). This switch would apply a voltage to the “H” wire in the “A” cable, and that                    
voltage would propagate through the system. For example, if “A” maps to “H” on the plugboard,                
and “A” in plaintext corresponds to “C” in ciphertext, and “H” enciphers to “P” through an                
Enigma machine at that offset, then “C” must map to “P” on the plugboard. This type of logical                  
deduction would continue to happen until the system reached a steady state, in which one of                
three results were possible:  



1. One relay on the output is energized: This would signify that the guess made at the                
beginning was correct, and the steady state consists of one voltage-carrying wire per             
cable on the back of the bombe. This is a successful result.  

2. All but one relay on the output is energized: This is the complement of result 1, where the                  
guess was incorrect. The wrong hypothesis led to a series of wrong assertions             
(represented by energized wires) which left only the correct wires un-energized. This is             
also a successful result because the un-energized relay represents the solution. 

3. All relays can be energized: This signifies that there is effectively no stable cycle for this                
setting of the Enigma, and it can be ruled out. 

The bombe, once set up and started, finds a steady state for the first Enigma setting, and checks                   
to see if all the relays are energized. If they are, it rotates the top rotors on each Enigma clone in                     
its menu, and tries again. The bombe is configured to stop if not all relays are energized, and                  
these “stops” are then notated down and analysed further, and the bombe is re-started. 

A bombe is likely to stop more than once throughout its run, and only one of these stops                  
is the correct one. The others are known as “false stops”, and can be identified through a couple                  
methods:  

1. The first is to identify all of the plugboard pairs in the menu. These were noted down                 
from which relays were energized when the bombe stopped. In a false stop, these              
plugboard pairings were likely to conflict (eg. both “C” and “D” are paired with “H”).  

2. From there, if the plugboard pairs did not conflict, the settings and plugs would be setup                
on a normal Enigma machine replica and used to decrypt the entire message. If it looked                
like plausible German (allowing for the rest of the unknown plugboard pairs), the stop              
was likely correct.  

Menus were often chosen to make the bombe stop as rarely as possible. In general, it was                 
favorable for a menu to have as many letters as possible, and as many cycles as possible, as these                   
would reduce the number of false stops. It was important, however, to have a menu whose span                 
(the range in Enigma offsets throughout the menu) was not too large, as that would reduce the                 
risk of having a turnover (where the middle rotor rotates) in the middle. Having a turnover                
happen somewhere in a menu would invalidate any stops produced by the bombe, as it did not                 
handle turnovers. 
 Soon after the idea for the bombe was conceived, Welchman made the addition of the               
“diagonal board”. This was an additional set of connections on the back of the bombe, designed                
to further reduce the number of false stops. Its guiding principle was that the plugs in the                 
plugboard worked reciprocally---if “E” was connected to “M”, then “M” must be connected to              
“E”. As such, the diagonal board connected the “E” wire in the “M” cable to the “M” wire in the                    
“E” cable (and had similar connections for every other pair of letters). The diagonal board               
slightly reduced the importance of cycles in the menus, as it introduced (smaller) cycles into the                
workings of the bombe. 
 



4.1 The Bombe In Code  

4.1.1 Making Menus 
Menus were made by matching “cribs” to enciphered messages that would likely contain that              
crib phrase or word. Instead of considering what would be “likely” in code, we made a menu for                  
every possible location that the crib could appear in the message. A location would not be                
possible if any of the letters in the crib appeared in the same position in the message since letters                   
could not be enciphered to themselves. For example, if the crib was 12 letters long, we checked                 
every set of 12 letters in the message to see if any of the letters matched, and, if they didn’t,                    
produced a menu for that location. The menus themselves were just graphs where every letter in                
the crib and message were nodes and the edges were the positions in which they “matched” in                 
the crib placement. For example if the crib had an “E” in the third position and the message had a                    
“L” in the third position, then an edge would be added to the graph that connected “E” and “L” at                    
position 3. In order to make menus that work with the bombe that does not contain a diagonal                  
board, the entire menu graph must be connected so implementation of this was also added. 

As discussed in the conclusion, our implementation of the bombe was not as successful              
as the staff at Bletchley Park were at finding Enigma settings. One possible improvement that we                
did not get to implement was only using “good” menus. This would entail using Alan Turing’s                
analysis on how many stops there were estimated to be for a given menu and only choosing                 
menus that resulted in few stops. The aspects of the graph needed to evaluate this would be the                  
number of total letters in the menu and the number of cycles that appear in the graph. 
 

4.1.2 Running Menus through the Bombe 
In code, running the bombe on a single rotor order and setting is represented as a graph. The                  
nodes of the graph are called the “state” which represent the voltage of every wire in every cable                  
that would be present in the bombe. An “on” wire is represented by a “true” value in the state.                   
The edges of the graph are state transitions which represent the Enigma clones in the bombe.                
They are triggered individually when one side of an edge (one node)’s state is changed. When                
we implemented the diagonal board, this was also treated as a state transition, that was triggered                
whenever an edge was relaxed. Then, in order to find the steady state as the bombe did, we                  
relaxed the graph, edge by edge until this relaxation resulted in no change in the state. If all of                   
the wires were “on,” the bombe would discard this state and setting and move on to the next one.                   
Otherwise, this state represented a “stop” and the result was forwarded on to the next stage as the                  
bombe immediately moved on to the next setting. The results from the bombe included possible               
plugboard pairs as well as an Enigma setting or a total rotor “offset.” This offset would be the                  
combination of both the rotor settings and the message key for the specific message run on the                 
bombe. 
 



4.1.3 Checking Stops 
All of the results from the bombe needed to be checked to see if they were “false stops.” The first                    
check was to make sure that the plugboard pairs that were returned were “legal.” This meant that                 
no two letters were paired with the same letter (e.g. “S” and “H” both paired with “X”) and there                   
was a maximum of 10 plugboard pairs and 6 “self-steckered” letters. For our implementation of               
the bombe, we made the simplifying assumption that every message would have exactly 10              
plugboard pairs. If the results from the bombe passed both of these checks, the plugboard pairs                
were “legal” and further analysis was needed to determine if this was a false stop or the correct                  
settings. 
 

4.1.4 Creating Messages 
In our ambitious attempt to mimic processing an entire day’s intercepted messages, we created              
thousands of messages to use as input to our automated bombe process (see section 4.1.5). As the                 
plaintext of these messages we used several classic books from Project Gutenberg . We read in               1

the file of the book and enciphered each line with the same day’s Enigma settings and individual                 
plaintext and message keys. The plaintext keys were included with the enciphered messages             
which were all written to another file. 
 

4.1.5 Automating the Process 
To automate the bombe process, we first loaded the input file and the guessed crib phrase. Then,                 
we created goroutines (threads) for each “worker” in the process. The first set of workers created                
menus from the crib and encrypted messages as explained in Section 4.1.1. These workers sent               
the menus along with the messages they were created from to a bombe runner. This bombe                
runner would schedule incoming menus on whatever bombe machines (also goroutines) were            
available. The bombes would run as described in Section 4.1.2 and the results would be sent to                 
the checker workers. The checkers would forward on only legal bombe results as described in               
Section 4.1.3 back to the main thread which would collect these results and perform              
post-processing. 

In the system that we implemented, the number of menus and results that we received               
were too numerous to collect and post-process in a reasonable amount of time. Unfortunately,              
we were not able to include any other successful checking mechanisms in our code to reduce the                 
number of possible results to find the Enigma settings for the day. We tried to research more                 
about how to determine if a stop was correct and if so, how to find the ring settings from the                    
result from the bombe (which only returned the aforementioned “offset”). The few ideas that we               
came up with, but did not have time to implement are the following:  

1 https://www.gutenberg.org 



1. To determine if a stop is correct, we currently attempt to decrypt the message and display                
it to the user, so they can tell us if it looks like semi-legible plaintext. Ideally, the                 
computer could tell if the text was semi-legible without user input to speed up the               
process. We had the idea to check for semi-legible text programmatically, by importing a              
dictionary of whatever language the plaintext was in, and taking Hamming distance            
measurements between the decrypted message and common words. After considering this           
Hamming distance to be small enough to reasonably be a match to the ciphertext, we               
could determine the remaining plugboard pairs by using the word the ciphertext is closest              
to as a new menu and repeating the process until all plugboard pairs were found. 

2. When the bombe stops, it outputs the Enigma settings that lead to the stop. We called this                 
the “quote key” (spoken form of ‘key’), as it was neither the ring settings for the day nor                  
the actual message key for the message used in the menu, but rather the composition of                
the two: “message key” - “ring setting” = “quote key”. We thought of a possible way to                 
recover the actual ring settings from this quote key, rotor by rotor: 

a. The rightmost rotor is the easiest to recover the ring setting for. Any message              
longer than 26 characters is guaranteed to have a middle rotor turnover in it (see               
Section 2 for more information about turnovers). As such, we can look for where              
that turnover occurs, and see what the quote key is at that point. Because we know                
which the rotor order from the bombe result, we know its default turnover             
position (with the default ring setting), and can recover the ring setting by looking              
at that difference (actual turnover position - expected turnover position). 

b. The middle rotor ring setting is recoverable in the same way, only it is a lot more                 
rare to find a message with a leftmost rotor turnover in it. That said, Bletchley               
park processed thousands of messages a day, and as a leftmost rotor turnover             
happens every 676 characters, there were most likely at least a few messages             
containing leftmost rotor turnovers. 

c. The leftmost rotor’s ring setting is the hardest to recover, as it does not influence               
any turnovers (there is no rotor to the left of the leftmost rotor). As such, the                
method we came up with, involved finding the other two ring settings and simply              
guessing the third. We planned to test our 26 guesses on the key encryption for a                
message we had cracked using the bombe. Given the plaintext key, the encrypted             
message key, and the lower two letters of the plaintext message key (recovered by              
adding the discovered right and middle rotor ring settings to the respective letters             
of the quote key), we can simply decrypt the encrypted message key with each              
possible ring setting for the leftmost rotor, stopping when we find one that             
decrypts the lower two letters correctly. 

 



5 Conclusion 
Once implemented, we attempted to run our entire decryption system on some test-encrypted             
messages. It took a surprisingly long time! Part of this was because we did not implement a lot of                   
the prioritizing that the cryptanalysts at Bletchley Park did, both in terms of choosing menus that                
were less likely to produce false stops as well as in terms of choosing stops that were more likely                   
to be correct. In addition to this our bombe implementation ran (on a 2013 MacBook Air) about                 
as fast (throughput and latency-wise) as one dedicated bombe.  

On one hand, it is pretty impressive that a tiny laptop can rival a 1-ton machine in speed.                  
On the other hand, this is not as impressive as we expected, given that the 1-ton machine was                  
created 70 years ago and technology has improved a significant amount since then. Modern              
computers can run billions of operations in a second, but despite this amazing increase in power,                
human ingenuity and specialized hardware can still compete. 

We think that overall, the conclusion to be made here is that dedicated hardware has an                
innate advantage over all-purpose hardware (the bombe’s instantaneous steady-state working          
faster than our relaxation method). In order outpace the efforts of codebreakers at Bletchley              
Park, we would have to exercise similar amounts of ingenuity and effort, optimizing our              
approaches algorithmically, and possibly creating specialized hardware. To do so would be            
using the same techniques and effort they did, which definitely speaks to the conclusion that               
simply having faster hardware does not invalidate the efforts of the researchers of the past.               
While Enigma would not be an effective cryptography standard today, it remains a nontrivial              
challenge to break, even in the face of modern technology. 
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