
Security Analysis of CAT-SOOP: Codifying Security Practices for
Executing Remotely-Generated Code

Alejandro Velez Jason Villanueva Rami Manna

Abstract

CAT-SOOP is a tool for automatic collection and
assessment of online exercises. To assess the sys-
tem’s security, our team focused on attacks follow-
ing a malicious-student-centered threat model exe-
cuted by submitting malicious code disguised as as-
signment submissions to an anonymized instance of
CAT-SOOP developed for 6.S080: A Brief Introduc-
tion to Programming in Python (IAP 2018). The
instance proved resilient to many attacks attempted
by our team, suggesting it to be a secure system. Our
team believes the system has been designed following
strong security practices allowing for the relatively
safe execution of remotely-generated untrusted code.
Codifying these practices will allow for other devel-
opers of tools executing remotely-generated code, for
educational technology or other purposes, to have a
reference for security practices. Our contribution in
this report consists of analyzing and codifying these
practices. We also suggest a security user study as a
next step for fully analyzing and perhaps improving
CAT-SOOP security.

1 Introduction

CAT-SOOP is a Python-based tool for automatic col-
lection and assessment of online exercises, originally
developed by Adam Hartz1 primarily for use in In-
troduction to Electrical Engineering and Computer
Science (6.01) course at Massachusetts Institute of
Technology (MIT). Now CAT-SOOP is used by com-
puter science courses at MIT as the major assignment
submission webpage. On a given instance of a CAT-
SOOP website, each personnel is provided appropri-

1MIT Lecturer, hz@mit.edu

ate access ranging from submitting online exercise
answers to setting the students’ grades. Depending
on the need of each course, additional functionalities
such as code test, help queue system, or logging (e.g.
late day counts) are implemented by the instructors.

Several aspects of CAT-SOOP’s purpose and im-
plementation make it an interesting case study in cy-
ber security. For starters, the tool’s purpose as a
assessment tool likely to be used in academic set-
tings lent itself for us to design a malicious-student-
centered threat model for analysis. CAT-SOOP sites
can also accept student code submissions and must
therefore be prepared to securely execute remotely-
generated untrusted code. Lastly, the tool is also
Python-based and is, therefore, exposed to the secu-
rity vulnerabilities of the Python programming lan-
guage.

Our team rigorously tested the CAT-SOOP on-
line exercise tool, following a student-centered
threat model in order to examine potential vul-
nerabilities exploitable by current and future stu-
dents of courses using CAT-SOOP software. Our
three main areas of focus were data security,
service reliability, and admin privilege escalation.
Penetration testing along these three areas was
guided by the OWASP Testing Guide (available
here: https://www.owasp.org/index.php/OWASP_

Testing_Guide_v4_Table_of_Contents) and an
exploration of the CAT-SOOP source code (tool web-
site: https://catsoop.mit.edu/website). Our
team attempted attacks on an instance of CAT-
SOOP provided and setup by the tool’s developer,
Adam Hartz (also lecturer for MIT’s department of
Electrical Engineering and Computer Science, web-
site: https://hz.mit.edu). The instance was orig-
inally developed for use in the MIT course 6.S080: A

https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://catsoop.mit.edu/website
https://hz.mit.edu

Brief Introduction to Programming in Python. The
instance contained several accounts with anonymized
student data from the IAP 2018 offering of the course.
Attacks were executed through accounts created by
the team under student permissions following our
student-centered threat model.

Following this model, our team focused its attacks
on the submission of malicious code to the course
assignment graders as we believe this to be the vector
students would most likely follow if they were to
attempt an attack on a CAT-SOOP instance. This
project analyzes the security of CAT-SOOP and
codifies the perceived best-practices implemented by
the software’s creator.

2 Significance

CAT-SOOP is used by 11 courses at MIT and 3
courses at Olin College. Better security can promote
CAT-SOOP to be used by more organizations. Cur-
rently, CAT-SOOP is small enough that it is unlikely
that hackers are actively trying to attack any of its
instances. However, as it gains traction, it is im-
portant that we ensure CAT-SOOP is secure, both
from students and the public, so that courses can run
reliably and without inconsistencies. Furthermore,
understanding CAT-SOOP’s security strengths and
weaknesses could improve understanding of security
for similar systems.

3 Responsibility Disclosure

Our team received permission from CAT-SOOP’s de-
veloper, Adam Hartz, to work on this project. We
maintained communication with him and agreed to
update him regarding any security issues discovered
by the team. A directory traversal attack was suc-
cessfully executed on the instance but the vulnera-
bility turned out to be due to a misconfiguration on
the specific instance and is not indicative of a larger
security flaw in CAT-SOOP. This attack was com-
municated to Adam, and the configuration fixed by
him, prior to this report. This report has also been

shared with Adam Hartz.

4 Related Work

To our knowledge, there have been no other attempts
at penetration testing or otherwise analyzing the se-
curity of the CAT-SOOP system. We are aware an-
other student team has also worked on analyzing
CAT-SOOP’s security this year and hope our reports
are complementary. Furthermore, sandboxing vul-
nerabilities, especially in Python, and Python privi-
lege escalation are not particularly standardized do-
mains and literature is fairly sparse. This work can
serve as a guide to mitigating risks associated with
executing remotely-generated code as well as poten-
tial sandboxing and privilege escalation vulnerabili-
ties.

5 Security Policies and Threat
Model

Though no security policy is officially listed, the pur-
poses of the software allow for stating clear security
goals which can shape such a policy. Specifically, the
principals for a security policy of the system (stu-
dents and course staff) and actions which should not
be permissible (students being able to view others’
submissions) are readily identifiable and allow for the
design of a threat model the system can be evaluated
against. As goals, CAT-SOOP should be able to pro-
tect information (such as student-submitted code or
instructor-submitted grades) from improper viewing
or modification. CAT-SOOP should also be resilient
as a service and maintain availability.

5.1 Threat Model

To evaluate the CATSOOP system’s ability to satisfy
its security goals, our team acted under a malicious-
student-centered threat model, acting as attackers
under student privileges. Our threat model focused
attacks on data security, service reliability, and ad-
min privilege escalation. Under these goals, possible
general attacks are described below.

2

5.1.1 Denial-of-Service

Malicious students could aim to consume site re-
sources such that the service is brought down. An
incentive for such an attack would be to force course
staff to approve an extension on an upcoming assign-
ment deadline.

5.1.2 Modifying grades and/or viewing oth-
ers’ assignment submissions

Malicious students are incentivized to adjust their
grades to be higher than the grade they have
achieved. If a malicious student is struggling with
an assignment, they may attempt to view the sub-
mission of another student which has satisfied the
assignment’s requirements.

5.1.3 Privilege Escalation

A malicious student who has attained admin priv-
ileges could achieve all of the malicious results de-
scribed above.

Our team explored many attack vectors aimed
at achieving the malicious results described above.
These attacks are detailed in the following section.

6 System Overview and Secu-
rity Practices

CAT-SOOP’s trust model states that any of the
source code content files are completely trusted by
the system and read, written, or executed, by some-
one who has total control of the file system. All for-
eign submitted code is not to be trusted by CAT-
SOOP and is instead executed in its own sandbox
environment. In addition to CAT-SOOP’s sandbox
practices, the system focuses on three other security
measures meant to thwart cybersecurity attacks.

6.1 Hashing

CAT-SOOP utilizes pseudorandom number genera-
tors (such as UUID4 in python’s UUID library) as

Figure 1: CAT-SOOP source code structure high-
lighting important sections related to cyber security
defense mechanisms.

well as a third-party library: fast sha256. This hash-
ing subsystem is used to salt user names, hash pass-
words with the pbkdf2 algorithm for 100000 itera-
tions, and generate API tokens that are paired with
the hashed/salted password/username combinations.
This encrypted information is stored in a CAT-SOOP
specified database for subsequent calls to the API for
user authentication. Much of CAT-SOOP’s data se-
curity relies on this user authentication; for instance,
when a user logs into the CAT-SOOP server URL,
submits an answer to any of the various question
types (multiple choice, expressions, code, numerical,
circuit problems, etc...), or simply needs to postload
a webpage that requires authorization such as view-
ing a problem set before its release date, or the user’s
grades.

6.2 Sandboxing

The CAT-SOOP Python Sandbox uses a combina-
tion of OS-level isolation and a locked-down Python
interpreter. The Python environment uses a custom
whitelisting/blacklisting scheme to prevent access to
undesirable builtins, modules, functions etc. The OS-
based isolation offers extra protections as it forces a
malicious student to have to break out of the sandbox
in order to view the application’s file structure.

Hard limits are placed on the resources (CPU time,
memory, and file size) which can be consumed by
the process running student code submissions. Fur-

3

https://github.com/dchest/fast-sha256-js

thermore a temporary directory is created and a sub-
process (consisting of a simple Python interpreter)
is instantiated to run student code. The directory
and process are removed/terminated upon complet-
ing execution (naturally or as forced by the limits) of
student code. Each new submission is given a new di-
rectory and process, limiting the damage an attacker
can cause even if successful in breaking out of the
sandbox or running malware.

6.3 Server Initialization & Configura-
tion

The CAT-SOOP server instance is configured with
a select few global variable and functions in
mind. For instance, the global variables within the
base context.py file control the base url for the site,
the file system’s root, and the database where data
logs and CAT-SOOP user info is to be stored. Since
CAT-SOOP’s trust model indicates that these global
variable are only accessible to the source code con-
tent files, it is of the utmost importance that the
sandbox features protect against reading, or writing
to the content files and their aforementioned global
variables.

6.4 Fault Tolerance

When CAT-SOOP receives a student’s code submis-
sion, CAT-SOOP spawns a child process in the server
that is subject to resource constraint such as: CPU
time, memory, and initial file size. Each of these in-
dividually attempts to timeout, or throw an error,
should a student’s code run longer than it should for
malicious, or non-malicious intent. For example, a
student that hasn’t learned control flow may have in-
finite loops in their code that cause the server to con-
sume all of its resources. This in turn would result
in a denial of service for other innocent, or other-
wise knowledgeable, students. These child processes
are run serially, but also asynchronously in Python’s
threading module. Though the intent is to protect
students from faulty server issues, there exists a cur-
rent issue that results in child processes not dying
and lingering on the server.

7 Attacks on CAT-SOOP

This section details the methodology for some attacks
attempted on the CAT-SOOP instance and the fea-
tures of the system which thwarted these efforts.

7.1 Malicious, resource-consuming,
code

To attempt denial-of-service on the CATSOOP in-
stance, our team submitted code containing infinite
loops and performing expensive computations simul-
taneously via multiple accounts. The enforced time-
outs on student-submitted code and the queueing
of student submissions (such that only a subset of
the submitted code instances would run at any given
point) made the CATSOOP instance resilient to such
attacks.

Furthermore, CATSOOP’s sandboxing mecha-
nism, which destroys the temporary locked-down
python interpreter running student code, thwarted
efforts to setup malicious web servers.

7.2 Directory Traversal Attack

Our team attempted to break out of the sandbox ex-
ecuting student-generated code and gain undesired
information by traversing the file structure of the
course server. Our first attempt at breaking out of
the sandbox was successful by using Python’s os li-
brary and traversing to the server’s root directory.
In doing so, the team was able to read configuration
files in some of the server’s directories. However, our
team was unable to modify, write, or execute files in
any directory. Our team was also unable to access
’lethal’ files (such as those containing user passwords
and user submissions) due to them being protected
by further privileges (our team’s attempts at privilege
escalation were unsuccessful).

Additionally, our ability to breakout of the python
sandbox was due to a configuration error causing the
machine to use the system’s Python for student sub-
missions, as opposed to the sandboxed Python. Upon
discussing the vulnerability with Adam Hartz, he
noted the misconfiguration and, upon his reconfigur-
ing of the machine, our team was unable to replicate

4

our attack. It should be noted that the possibility
exists that our team could have been able to read
testing scripts or other files on the instance server
before reconfiguration.

7.3 Privilege Escalation and Modify-
ing Files

After the reconfiguration of the CAT-SOOP instance,
our team attempted to escalate file permissions on
the UNIX server with the shell ‘mv‘ command. As
‘mv‘ preserves the file permissions of the source file,
the idea behind this attack was to use the file exe-
cute permissions of the student-code submission in
the sandboxed python and ‘mv‘ a malicious file in
place of the student code to execute on. An exam-
ple file worth executing, is the shell command binary
for ‘chmod‘. Executing this binary would allow the
user within the server to execute a shell command the
user might not have the correct permissions for, and
grant permission read, write, or execute permissions
for files and directories that were once unauthorized.
This attack was thwarted as the sandbox disallowed
writing new files to disk with the ‘os‘ library; how-
ever, empty files are able to be created. The sandbox
permissions also thwarted other attempts at privi-
lege escalation such as hijacking python modules or
imported files.

8 Next Step - Security User
Study

While the system is deemed fairly secure, it is im-
portant to point out misconfiguration of a particular
CAT-SOOP instance can create vulnerabilities which
would not otherwise exist. This was the case with the
original CAT-SOOP instance tested by our team. In
practice, a large portion of security incidents can be
traced back to problems in usability causing a user
to make a poor decision. We believe fully assess-
ing, and perhaps improving, CAT-SOOP’s security
requires a strong security user study. A next step
along these lines would be to perform a walkthrough
of configuration controls. Exploring how access con-
trol and other security mechanisms are configured on

the instructor-side and places in this process in which
instructors are likely to make mistakes is essential to
properly securing CAT-SOOP.

9 Conclusion

The reconfigured CAT-SOOP instance tested by our
team proved resilient against a malicious-student-
centered threat model. Our team tested several at-
tack vectors including denial of service, privilege es-
calation, and directory traversal. Though some secu-
rity flaws were found in the initial instance of CAT-
SOOP provided by Adam Hartz, which allowed stu-
dents to execute their code using the system ver-
sion of Python, proper reconfiguration of the instance
seemed to patch these vulnerabilities. However, this
event illustrates the need for a proper security user
study focused on instructor-side configuration con-
trols. Such a study would help assess the security of
CAT-SOOP beyond theoretical security.

Our team has codified the practices allowing CAT-
SOOP to securely execute remotely-generated un-
trusted code. These include:

1. the use of a hashing subsystem to salt usernames,
encrypt passwords, and generate secure API to-
kens

2. a sandbox configured to provide OS-level isola-
tion and a locked-down interpreter without ac-
cess to system files

3. the creation of resource-constrained processes for
the running of student-submitted and the ter-
mination of such processes upon completion of
student code

We believe these practices should be followed when
implementing tools executing remotely-generated
code.

10 Acknowledgments

We thank professors Yael Kalai and Ronald Rivest
as well as the full staff of MIT 6.857: Computer
and Network Security for their assistance through the

5

course in our completion of this project. We give spe-
cial thanks to our lead TA for the project, Jonathan
Frankle, who served as a mentor throughout various
stages of the project. Lastly, we thank CAT-SOOP
developer Adam Harts for creating this software, em-
powering several courses at MIT. We also thank him
for his collaboration throughout the project.

11 Resources and Bibliography

CAT-SOOP Git: https://catsoop.mit.edu/git/

cat-soop/cat-soop

CAT-SOOP website: https://catsoop.mit.

edu/website

OWASP Top 10 Security Vulnerabilities List:
https://www.owasp.org/images/7/72/OWASP_

Top_10-2017

OWASP Testing Guide: https://www.owasp.

org/index.php/Testing_Guide_Introduction

OWASP Application Security Verification Standard
(ASVS) Project: https://www.owasp.org/index.

php/Category:OWASP_Application_Security_

Verification_Standard_Project

Erickson J., Hacking: The Art of Exploitation,
Second Edition

6

https://catsoop.mit.edu/git/cat-soop/cat-soop
https://catsoop.mit.edu/git/cat-soop/cat-soop
https://catsoop.mit.edu/website
https://catsoop.mit.edu/website
https://www.owasp.org/images/7/72/OWASP_Top_10-2017
https://www.owasp.org/images/7/72/OWASP_Top_10-2017
https://www.owasp.org/index.php/Testing_Guide_Introduction
https://www.owasp.org/index.php/Testing_Guide_Introduction
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project

	Introduction
	Significance
	Responsibility Disclosure
	Related Work
	Security Policies and Threat Model
	Threat Model
	Denial-of-Service
	Modifying grades and/or viewing others' assignment submissions
	Privilege Escalation

	System Overview and Security Practices
	Hashing
	Sandboxing
	Server Initialization & Configuration
	Fault Tolerance

	Attacks on CAT-SOOP
	Malicious, resource-consuming, code
	Directory Traversal Attack
	Privilege Escalation and Modifying Files

	Next Step - Security User Study
	Conclusion
	Acknowledgments
	Resources and Bibliography

