
Neural Cryptography: From Symmetric Encryption to
Adversarial Steganography

Dylan Modesitt, Tim Henry, Jon Coden, and Rachel Lathe

Abstract— Neural Cryptography is an emergent field
that aims to combine cryptography with Neural Networks
for applications in cryptanalysis and encryption. In
this paper, we (1) show Neural Networks are capable
of performing symmetric encryption in an adversarial
setting and improve on the known literature on this topic.
We also (2) show that Neural Networks are capable of de-
tecting known cryptographically insecure communication
by having them play known cryptographic games based
on Ciphertext Indistinguishability. Finally, we (3) present
further research in Neural Steganography in the context
of developing neural end-to-end stegonographic (image-
in-image, text-in-image, video-in-video) algorithms in the
presence of adversarial networks attempting to censor.

I. SYMMETRIC ENCRYPTION

Symmetric encryption is a form of encryption in
which the sender and receiver use the same key to
encrypt a plaintext and decrypt the corresponding
cyphertext. Traditionally, symmetric encryption al-
gorithms have used either block or stream ciphers.
However, it has been demonstrated that in a system
of neural networks, with end-to-end adversarial
training, they can learn how to perform forms of
‘encryption’ and ‘decryption’ without the use of a
specific cryptographic algorithm [1].

A. Prior Work
The work done by Adabi and Andersen can be

summarized as follows. They create three neural
agents: Alice, Bob, and Eve. Alice receives as
input a plaintext in the form of a fixed length
bitstring, P , as well as a private key K. In practice,
these are the same length though hypothetically
this is not required. Bob receives the output of
Alice, C, as well as the private key and is ex-
pected to produce the original message P . Eve is
another network that receives Alice’s output C, but

*This work was done as the final project to 6.857: Computer and
Network Security at the Massachusetts Institute of Technology

does not receive the private key. The architecture
of these individual networks consist each of a
single feed forward layer with no bias and σ
activation, being followed by four 1-dimensional
convolutions with tanh activations, presumably
with the intention to diffuse. The networks are then
trained in an adversarial fashion with the following
constructions for loss (where d is the L1 norm):

LE(ΘA,ΘE, P,K) := d(P,E(ΘE, A(ΘA, P,K)))

LB(ΘA,ΘB, P,K) := d(P,E(ΘB, A(ΘA, P,K), K))

LAB(ΘA,ΘB, P,K) := LB(· · ·)− LE(· · ·)

where the training goal is to choose the optimal
ΘA,ΘB such that LAB is minimized.

This construction was trained in rounds trading
off freezing Bob/Eve and unfreezing Eve/Bob, and
it showed to be relatively sturdy to decryption from
Eve while Bob was able to learn.

The researchers showed that the networks did
not learn XOR for doing a sort of one-time
pad, but rather some other hard-to-invert function.
Evidence of this is found in that “a single-bit flip
in the key typically induces significant changes in
three to six of the 16 elements in the ciphertext,
and smaller changes in other elements”. As we will
describe, calling these operations ‘encryption’ is
quite misleading.

1) Replication: In replicating the paper’s find-
ings, we found somewhat poorer results than de-
scribed, as well as design decision that lend them-
selves to obfuscation rather than encryption. Both
implementations by others [2], as well as our own
Keras implementation, performed worse than the
original paper and converged less frequently than
the stated 1/2 or 1/3. We had to make minor
deviations from the original training schedule, such
as slightly pre-fitting the Alice-Bob network before

1

adversarial iterations, to get convergence at all.
We also had to iterate more frequently between
networks, as too long between switching led to
much more chaotic results.

Furthermore, the original paper considers the
scheme to be ‘secure’ against the adversary if
newly initialized Eve(s) can not converge within
5 epochs. However, we believe that this condition
is quite insufficient, as in our experience, simply
giving Eve more time often resulted in her recov-
ering a significant number of bits.

Fig. 1. MSE Loss and Decryption Accuracy in a Successful
Convergence

Above are two examples of training where Eve
does not gain any accuracy advantage after post-
fitting, and one where she learns to decrypt nearly
70% of the plaintext. Both experiments ran with
an additional 50 epochs for Eve to post-fit. The
prior happened roughly only 1 in 6 trails, despite
normal vs xavier initialization.

At the end of the day, we do think these results
are interesting but do have some fundamental

Fig. 2. MSE Loss and Decryption Accuracy in an Un-Successful
Convergence

flaws. Firstly, the outputs of the networks are con-
tinuous floating point numbers. Thus, C, Pb, and
Pe can technically be any floats within the range
of the final activation. This turns out to be a huge
problem, as we often observed that C, even during
a convergence where Eve does not decrypt, simply
performs a sort of mapping to arbitrary values
between −1, 1, effectivly increasing the ‘base’ of
the encoded image. The specifics of the encryption
and decryption operations are hard to discern, but
it surely seems that Alice and Bob learn more of
an obfuscation than a method of encryption despite
the encryption being ‘key dependent’.

Furthermore, we believe that there are several
quite unfair assumptions made here that make the
task easier for Alice and Bob than Eve beyond
the absence of the key. The condition that Eve
needs to decrypt the ciphertext is absurdly strin-
gent and does not lend itself well to any reasonable
definition for being secure, but rather encourages

2

obfuscation.

B. Ciphertext Indistinguishability for Eve
Instead of having Eve produce the plaintext,

P , without the key K, from the ciphertext C,
we think a better construction would be to ask
Eve given a plaintext, P and a possible ciphertext
C ′, does C ′ = Alice(P)? This lends itself to
a more natural GAN description where Eve acts
as a discriminator. The networks can continue to
be trained adversarially where Eve’s loss is now
binary cross-entropy on the truth label:

LE := −
∑
i

(y′i log(yi) + (1− y′i) log(1− yi))

This architecture, visually, looks as follows:

Fig. 3. True GAN setup where Eve judges Ciphertext Indistin-
guishability

Other formulations, such as given two plain-
texts, P1 and P2, and two ciphertexts, C1, and
C2, is Alice(P1) = C1 ∧ Alice(P2) = C2 or is
Alice(P1) = C2 ∧ Alice(P2) = C1, could be
the subject of further exploration; however, we
did not want to over-complicate training without
a noticeable logical benefit to the reconstruction
of the game rules.

With the simpler formulation, Alice and Bob
are trained with the added loss term, beyond the
MSE of the decryption on the plaintext, of the
binary crossentropy into the discriminator (frozen)
of labels that suggest the ciphertext is not the en-
cryption of the plaintext, in standard GAN fashion.
Alternatively, we considered the loss of

γ ∗ 0.5− sumi|yi|
n

to encourage uniformly distributed predictions
from the discriminator. This lightens the incentive
for Alice and Bob to get higher than 50% false
negatives, which can only last temporarily. We
found that the latter loss term helped in earlier
convergence, but could cause stability issues at
converged values where the discriminator chooses
to predict values all of a single class. Thus, mod-
ifying the gamma factor during training helped
improve this stability.

We additionally found that using this criteria
for Eve resulted in a 0% success rate out of
100 trials with the network architectures described
above. Eve always obtains nearly 100% accuracy
with the above metric and with all other network
architecture and training procedures remaining the
same.

Furthermore, we attempted to weaken Eve
slightly by adding Gaussian Noise to the false
Ciphertexts as to make them look more contin-
uous, given the convergence pattern we described.
However, any remotely reasonable level of noise
([0 − 0.5]) std did not hinder Eve almost at all.
Thus, this seemed to be a complete failure.

C. Encouraging Element-Wise Operations

In order to encourage element-wise operations,
rather than relying on a series of fully connected
layers and convolutions to learn some operation,
we construct a network architecture based on the
following: given two inputs of the same length,
learn only a function that is element-wise of those
inputs producing a same-length output. Specif-
ically, inputs i and j have enumerated entries
i1...n ∧ j1...n. Each ik, jk are two inputs to a small
feed forward network of its own construction, with
variable numbers and sizes of hidden layers and
variable activations. This feed forward network
could enforced be the same for all elements, or it
could be an entirely separate kernel. Our custom
element-wise layer in Keras that can handle arbi-
trary network depths, sizes, activations, and kernel
configurations. The following figure diagrams this
network architecture.

3

Fig. 4. Element-Wise Architecture Diagram with two 3-Element
Inputs

With this network design, we hope to be capable
of learning bit-wise functions, specifically xor
and nxor. To verify, as a proof of concept, we
verified that this network architecture is capable
of learning sequence to sequence xor with nearly
perfect accuracy after a small number of steps.

We use this new layer construction to com-
pletely change the network architecture of Alice,
Bob, and Eve. Alice and Bob both get two bitwise
network layers, one with n hidden layers and
one with 1 to produce a valid size result. The
activation on the first layer should be something
non vertically-symmetrical, as to not require those
functions where [0, 1] and [1, 0] can not map to
the same thing. Otherwise, without biase, it is
impossible to have a function that does the contrary
like xor. ReLu showed to be a reasonable candi-
date. The final activation need be something that
can produce valid bits. In our experimentation, we
found that only two options alleviated the problem
of mid-range floating point mapping. We could
either add an additional loss term to Alice’s output
that punished deviation from one of the bit values,
1 or −1. This loss term was

λ(1−
∑

i |yi|
n

)

where λ could help weight this term. This felt
like holding the hand of the activation, and also

complicates the loss. Alternatively, we used the
following ‘hard tanh’ function.

htanh(x) = 2 ∗max(0,min(1, xi ∗ 0.2 + 0.5))− 1

based of the known ‘hard sigmoid’ function. We
found this activation was an excellent choice to
remove any ambiguity over floating point results.
Furthermore, when placed on both Alice and Bob,
floating point results for ciphertext or recovered
plaintext were practically eliminated. Eve was
given a larger network, where she had an additional
intermediate bitwise layer and additional dense
layers after the bitwise later, all with significantly
more units. We think this raw parameter advantage
helps aleviate weak eve concerns.

D. Results and Analysis
This problem is now essentially reduced to

attempting to get the networks of Alice and Bob
to learn xor or nxor implicitly, in an adversar-
ial setting, when it is the best choice to secure
communication. We found that this does indeed
happen, but with several caveats.

Fig. 5. Sucessfull element-wise hard bit output conversion to
the one time pad. The above shows overlaid loss (with false label
bcc on the generator), and the below shoes the accuracy of the
discriminator. Results were confirmed to be nxor

4

Oftentimes, instead of learning the highly non-
linear xor and nxor, the networks choose to fall
into a shortcut. Sometimes, it would ignore adver-
sarial loss entirely, and learn the identify function
and be unable to escape this local minimum. This
was rather rare though. More often, the network
would decide to learn a function like nand or or,
which can produce 75% reproduction accuracy, but
lead to less discriminator accuracy near 60%.

We found that xor/nxor was learned implicitly
roughly only 1/12 times. These odds can be raised
by forcing Θa = Θb and using the same weights,
independent of index. However, this is beyond
hand holding. Thus, initialization and optimization
technique plays a huge role in what approach the
network takes. We found no standard initialization
that provided better results. Furthermore, more ‘so-
phisticated’ optimizers, like Adam, unsurprisingly
yielded the best results.

Fig. 6. Local optimum learning of nand for securing communi-
cations

Finally, we did experiment with using BNNs
[4]. However, we had little success. Perhaps further
research into this formulation could be interesting.
Also, it may be the case that more ‘curiosity’ based
optimization methods with Reinforcement Learn-

ing could provide more success here; however,
we feel that the already drastically instable setting
of this 3 Agent GAN combined with additional
in-stable RL methods like Q-learning and Policy
Gradients would be a true recipe for disaster.

However, an additional take-away helped us
look at a new approach to ‘secure’ communica-
tion. Alice and Bob tended to perform obfuscation
rather than encryption. So instead of forcing the
problem of having networks re-discover the one-
time pad, we wanted to embrace the strengths of
Deep Learning and perhaps provide more useful
applications within the realm of secure commu-
nication. For this reason, we decided to explore
Neural Steganography, an also new (but perhaps
more useful), topic in Deep Learning, and did so
with much success.

II. INTRODUCTION TO STEGANOGRAPHY

Steganography is the practice of hiding data
within data, oftentimes in plain sight where the
human eye cannot detect that any secret might
be concealed. This is different than most cryp-
tographic practices where encryption is the focal
point of protecting the secret; however, steganog-
raphy is powerful practice that can be used to
fool more passive observers. If an observer doesn’t
think that any secret is present they won’t take
any actions to alter or block the secret message
from reaching the intended observer. In this sense,
there are two parts in steganography, first there is
the secret which is message that is hidden and the
cover, the data that is supposed to hide the secret
from an observer. This means that steganography
can be used to hide secrets in a myriad of data
types if there are techniques to obfuscate the data.

The first mention of steganography can be
dated back to 1499 Johannes Trithemius’ book
Steganographia which appeared to be a book about
using spells and magic to communicate across long
distances, but in reality was a book dedicated to
early cryptographic and steganographic pratices.
It only took scholars over a hundred years to
actually figure out the hidden meaning behind
Trithemius’ work, and since then steganography
has evolved to allow people to hide secrets in
all types of data from text in images to video-in-
video. In this part of the paper we will be focusing

5

on hiding text in images, images in images, and
video-in-video using adversarial neural networks
to devise a hiding scheme that can avoid a passive
observer. However, in order to validate that our
neural network can create a sophisticated scheme
that is capable of avoiding detection from most
observers, we first need to construct an adversary
that has learned how to detect the most common
steganographic practices of hiding data in images.

III. GOALS

We present several neural applications to
Steganography, with the ultimate goal of hav-
ing Neural Networks perform stenographic algo-
rithms on different data both with the standard
steganographic goals (hidden secret looks like the
cover and the reconstructed secret is accurate),
as well as being undetectable to an adversary
looking for steganography. We think this serves
as a good architectural candidate for censorship-
resistant steganography among other applications.
However, before presenting such a construction,
we attempt to create an adversary that can detect
(perform a steganalysis) on the most common
deterministic Steganography algorithm.

IV. LEAST SIGNIFICANT BIT

Least Significant Bit (LSB) is the most com-
mon technique employed by practitioners intent on
hiding binary data within binary data. The LSB
scheme is quite simple to employ. We will explain
this in the context of hiding text in an image.
For every pixel in an image there is an associated
(r,g,b) tuple, which defines the color of the pixel.
Each of these entries are byte and range in decimal
0 to 255. In order to encode some text you first
convert the text value to binary, i.e. a → 0110
0001. Now, to encode the information match the
parity of the R, G, or B value to the parity associ-
ated with 0 or 1 in the binary string representation
of the character, i.e. the least significant bit of the
color. In order to best demonstrate this, we will
encode the character “a” in a sample 4× 4 image.

We start with our binary string representation
of “a”, 0110 0001, and a matrix of (R,G,B) triples
each representing a pixel in an image.[

(13, 32, 128) (96, 47, 26)
(211, 5, 44) (69, 17, 200)

]

We start now with the highest order bit of “a” and
the R value of the pixel in the top left corner. The
highest order bit in “a” is 0 and the R value of
the pixel in the top left corner is 13, therefore we
want to change the parity of this value to match
that of the bit, so we change the R value to 14.
The (R,G,B) values of each picture look like this
after this initial update step.[

(14, 32, 128) (96, 47, 26)
(211, 5, 44) (69, 17, 200)

]
↓[

(14, 33, 128) (96, 47, 26)
(211, 5, 44) (69, 17, 200)

]
↓[

(14,33,129) (96,48,26)
(212,5, 44) (69, 17, 200)

]
The values in bold in our final image represent

the bits that we’ve used to encode the character
“a”. Notice, some of the bits haven’t changed from
the original image because they already matched
the parity of the relevant bit.

Note that in LSB, If someone were to look at
the (R,G,B) values for each pixel in an image
without a secret and then convert the parity of
those values to bits, the resulting bitstring would
be fairly random. If the encoded secret is random,
it would be exceedingly difficult for a passive
observer to detect if there is an underlying secret
or not; however, if an observer can detect any sort
of pattern in what is the binary string, then the
observer should be able to detect if there is some
information being encoded. Therefore, in order to
see if a neural network could actually create a
useful steganalysis adversary we wanted to arm
our adversary with the ability to detect LSB.

V. CONSTRUCTING AN ADVERSARY TO

DETECT LEAST SIGNIFICANT BIT

Neural networks excel at learning to detect sta-
tistical patterns, as they serve as a good universal
function approximator, which is why it makes
sense that creating an adversary to detect text-
in-image LSB encoding should be possible. Ob-
viously, the adversary will not be able to detect
all types of LSB encoding as things like encrypted

6

text will appear random; however, the adversary
should be able to detect valid ascii characters
encoded as plaintext into an image. The adversary
can do this because the binary representation of
ASCII characters is not random, nor are valid
English words random. For example, lowercase
letters begins with 011 and uppercase letters begins
with 010, so our neural network should be able to
detect if there is some pattern if those three binary
values are consistently showing up in order.

Next we need to define what kind of game we
want our adversary to play. We want the adversary
to detect if there is secret text encoded within the
image. The adversary does not need to detect and
reveal what the secret is, but rather have confidence
that the pixel values are not random. Therefore, our
game will be seeing if the adversary can detect if
there is a secret encoded within the image with
better than 50% accuracy. We chose this game
because when LSB is put into practice, it’s to
avoid the detection of any secret being transmitted
from one party to another. Therefore, if an observer
detects the possible presence of a secret, it is often
just as bad as the secret itself being revealed.

A. Data and Network Construction
The first step in defining how we were able to

construct this network is to talk about the data
set that we used. We used approximately 50,000
32 × 32 images from ImageNet and drew from
a dictionary of 10,000 words which were then
randomly chosen to be embedded into images
using Least Significant Bit.

The adversary is then trying to determine if
there is a hidden message in a given image. We
find that CNNs make little sense to use here. The
input for the CNN will be scaled down, making
the individual pixel values (and, importantly, their
parity) very obfuscated. Thus, steganographic en-
cryptions that rely on subtle pixel value changes
will be difficult or impossible to capture. These
assumptions hold in our experimentation as we
were unable to have a CNN converge to detect
LSB steganography. Rather, we want to have the
network learn some mapping to particular pixel
values [0-255] and what those values mean (parity,
for example).

The first step in figuring out this mapping is to

use a flatten layer, which reduces a 32× 32 image
to a list of 3072 (R,G,B) values.[

(13, 32, 128) (96, 47, 26)
(211, 5, 44) (69, 17, 200)

]
↓

[13, 32, 128, 96, 47, 26, 211, 5, 44, 69, 17, 200]

Now that we’ve flattened our image, we can
more easily find a mapping for each pixel value.
We use an embedding layer, usually used to trans-
late word encodings to a vector describing their
meaning, but in this case the embedding layer will
be mapping pixel values to their associated parity.
The embedding layer has an input dimension of
256 because the (R,G,B) range from 0 to 255.
This kind of ‘pixel embedding’ trick helps us de-
tect steganographic encryptions that produce pixel-
based patterns in the image. LSB and many other
stenographic algorithms fall under this umbrella.

B. Results and Analysis
We used standard supervised learning tech-

niques to train the LSB adversary. We measured
our loss in terms of binary cross entropy and
trained our LSB adversary for 50 epochs with a
batch size of 32 in each epoch to ensure that our
adversary adequately converged to being able to
detect LSB. The following graphs indicate the loss
over these iterations.

Fig. 7. Training Loss of Least Significant Bit Adversary

As we can see in our results, the adversary
was able to perform quite strongly and learn to
detect if there was an LSB encoding within a
image quite quickly. This demonstrates that this
network will make for a worthy adversary for

7

our Encoding Network in order to elicit a strong
encoding scheme.

VI. TEACHING NEURAL NETWORKS TO

HIDE DATA IN DATA

Now that we have a sufficiently strong adver-
sary, we want to see if we can design a network
that will be able to hide a secret in plainsight in
the presence of this adversary. We explore neural
approaches for text in image, image in image, and
video in video. Furthermore, we use roughly the
same network for all pairings of data.

We again used about 50,000 32×32 images from
ImageNet for image secretes and covers, about 50
downsized 32×32 30 frames per second videos for
the video secrets and covers, and roughly 10,000
valid English words. For training and testing we
randomly sampled from these datasets.

We will refer to the LSB adversary that we cre-
ated in the previous section as our Censor, which
we will train adversarially against our Encoding
Network. The Encoding Network is the network
that will be learning how to hide secrets in the
covers.

A. Encoding Network Construction
From a high level our Encoding Network, an

adversarial neural network, is comprised of three
networks working together against the Censor.
The three networks are the Prep Network, the
Hide Network, and the Reveal Network. The ar-
chitecture and design of these three is inspired
by the previous work by Baluja (2017) [3]. The
Prep Network prepares the Secret to be hidden
in the Cover, while the Hide Network then hides
the Secret within the Cover. Finally, the Reveal
Network exists to make sure that the Hidden Secret
can be reconstructed after being hidden. This last
part is extremely important as a steganographic
model would be useless if the receiver could not
read the message. The following graphic depicts
how the three networks interact with one another.

While each of the networks has a different
function, they all have a similar structure. Each
network takes in an input which is an image along
with identifying information in the form (height,
width, channels). Channels represents the number
of values associated with a given pixel. When

Fig. 8. High-Level Representation of the Encoding Network

hiding text in an image, we can represent the text
in its binary form with each pixel only having one
value representing it (0 or 1) instead of three values
for standard color images. With images and videos
we set the channel value to 3 because for each pixel
there is an associated (R,G,B) triple.

In each network, if it’s necessary, we con-
catenate the output of the previous network with
the input of the next network. Each network is
constructed from three modules, the Input Module,
Output Module, and the Convolutional Module.
This construction can be seen in the figure below.

Let’s first look at the Convolutional Module.
This block is made up of three sets of four convo-
lutional layers One set of convolutional layers has
a 3× 3 window size, the second set has a window
size of 4 × 4, and the last set of convolutional
layers has a window size of 5 × 5. Each convo-
lutional layer has a stride length matching that of
its window size. All three sets of convolutional
layer sequences operate independently until they
are concatenated. This means that the different
sequences of layers are able to capture information

8

Fig. 9. Prep, Hide, and Reveal Network Module Representation

about the image at different scales. The 3×3 con-
volutional layers will capture small details, while
the the 4 × 4 layers will capture the relationship
and interaction of those small regions, and finally
the 5 × 5 layers can capture the big picture of
the image. We demonstrate this architecture in the
following figure. The Input Module function in two

Fig. 10. Convolutional Module Representation

ways. In one instance, like with the Prep Network,
the Input Module is simply one layer that takes in
the input and then passes it to the Convolutional
Module. However, in the Hide Network the Input
Module concatenates the two inputs, the prep latent
and the cover. The Output Module is actually made

up of three sets of layers. First, the Output Module
concatenates the outputs from the three sets of
convolutional layers. Then it passes this output
through one round of 3 × 3, 4 × 4, and 5 × 5
convolutional layers and then finally concatenates
the result. This construction can be seen in the
figure below.

Fig. 11. Output Module Representation

Now we can return to our overall construction.
The Prep Network creates the Prep Latent, which
is the what the network learns to be the best
mapping from the Secret to the relevant pixels
needed to encode the Secret in the Cover. Next,
we concatenate the prepared Secret with the Cover,
and pass that through the Hide Network in order
to finally create the Hidden Secret. The power
of neural networks is most evident here because
the Encoding Network learns the best mapping
to hide the Secret within the Cover, regardless of
how complicated the scheme would be to devise
manually.

The final step is to pass the Hidden Secret
into the Reveal Network to make sure that the
Secret can actually be recreated by the receiver. If
we train this entire network adversarially against
the Censor, we can create a sophisticated network
capable of avoiding detection from a strong adver-
sary.

In order to train this network we first define the
loss function:

9

L(C,HS, S,RS) = α(C −HS)2 + β(S −RS)2

where C is the Cover, HS is the Hidden Secret,
S is the Secret, and RS is the Revealed Secret.
β = 0.75 in practice. Then we train the networks
as follows.
• 2 epochs where α = 0
• 10 epochs with respect to α = 1
• 5 epochs of transfer-learning to the Censor
The final result is a network architecture that can

successfully hide text in images, images in images,
and video in video. However, what is even more
astounding is that we are in fact including 2 bits
in every Hidden Secret image or video for every
1 bit that exists in the Cover.

B. Hiding Images in Images
Encoding images in images is the main goal

of our network architecture. The main difference
in how this is executed is that we have to do
less preprocessing of the Secret unlike when we
hide text in images. Furthermore, each pixel in
the secret image is represented with three (R, G,
B) values, so we need to make sure our network
knows to use three channels for the image. As we
can see in the graph below, our network performed
strongly at hiding the Secret well and accurately
decoding the Hidden Secret.

Fig. 12. Encoding Network Loss for Hiding Images in Images

Now we look at how our Censor performed
in detecting if there was any encoding in the
image. Our Censor was the LSB adversary that
we constructed before; however, even though it
was adept at identifying LSB encoding for text in

image, the Encoding Network proved to be too
difficult to crack. We see in the graph below that
our loss hovered around 0.7, a poor value for such
a loss metric.

Fig. 13. Censor Loss for Hiding Images in Images

The poor performance of the Censor in this case
can be attributed to two reasons. The first being
that our Encoding Network created some random
looking mapping of pixels that enabled it to evade
any sort of pattern recognition that the Censor was
able to detect. The second possibility is that while
our Censor is good at detecting text in images,
there is inherently more randomness in how images
are encoded than text.

C. Hiding Video in Video
As we have a good image in image network,

hiding video in video is a task easily done by just
taking every pair of video frames for the Cover and
Secret and using the Encoding Network to produce
the Hidden secret and latter the reveal. The figure
below shows subsequent frames with this method.

Furthermore, we have developed a web applica-
tion so users can do this with their own content,
and we plan to make it publicly available in the
near future.

D. Hiding Text in Images
Finally, we wanted to test how well our network

could hide text in images. We formatted the text
as an image (a matrix) with one channel where
each ‘pixel’ value is binary value corresponding
to the binary representation of a character. While
the Censor was able to easily detect text in image
encoding based on LSB, our Encoding Network

10

Fig. 14. Two frames of a secret video (top left) and cover video
(top right), as well as their hidden secret (bottom left) and revealed
secret (bottom right) counterparts.

was able to create a novel encoding scheme that
was able to accurately hide and reveal the secret
text. We can see these results in the figures below.

Fig. 15. Encoding Network Loss for Hiding Text in Images

VII. FURTHER RESEARCH AND

POTENTIAL APPLICATIONS

The possibilities for further research and appli-
cations of this topic are immense in certain aspects
and useless in others. Steganography and security
practices in general are far older than computing

and machine learning, yet we see the massive
potential that the union between these two subjects
could bring.

Our initial motivation was inspired by our TA
and project advisor Jonathan Frankle who talked to
us about how in countries with totalitarian regimes
it can be difficult for citizens to discuss dissenting
opinions online or to organize demonstrations or
protests due to the ever watching government.
Steganography can be utilized by these citizens to
evade the watchful eye of the government without
raising suspicion; however, with the continued
improvements in computing, this becomes more
difficult. Using a network like the one we’ve pro-
posed here it could be possible to train our network
against an adversary that mimics the censor in
question, like we did with our LSB adversary,
in order to ensure that people would be able to
freely discuss their opinions. This application is
contingent on being able to replicate a strong
enough adversary because if our adversary is too
weak the resulting encoding will be easily detected
by a stronger adversary.

However, we think that the question of whether
neural networks can perform encryption among
themselves is trickier than it might seem. In order
to gain a satisfactory outcome, much augmentation
and complication needs to be introduced, taking
away from the elegance of the original idea ‘Neural
Networks learning to encrypt’. Our approach nar-
rowed the problem to be essentially, how hard is it
to learn XOR in this loss space. Beyond the point
of doing it to do it, we see little future application
of this technology; however, we would be happy
to see ourselves proved wrong.

11

APPENDIX

A. Open Source Software

You can visit all the code we made for our
project https://github.com/DylanModesitt/neural-
cryptography. Everything was written in python
3.6 with 3.7 future . We used Keras with a TF
backend. Further setup instructions are described
in the ReadMe. We hope you like it!

B. DES ECB Cryptanalysis

Additionally, we attempted to expose the weak-
ness of DES ECB mode with a single key by
utilizing neural networks. As we learned in 6.857,
DES ECB is not CCA secure (an adversary can
always pad an input message with an additional
block and send it to the encryption oracle, and just
compare all but the last block of the result with the
ciphertext to win the CCA game).

Thus, we attempted to set up a form of an indis-
tinguishability game, and create a neural network
adversary to try to learn an advantage. A major
constraint in creating a CCA-like game within a
neural network structure is that DES ECB has
permutations and s-boxes that are not differentiable
which prevents us from giving our adversary en-
cryption oracle or decryption oracle access.

Instead, we created a CPA-like game that pre-
sented our adversary with one plaintext and one
ciphertext, and challenged it to determine whether
or not the ciphertext was the encryption of the
plaintext or just random bits. Our implementation
was first tested by using DES ECB with one
round (which effectively does not alter half of the
plaintext) and observing that our adversary quickly
converged to 100% accuracy. Ultimately, however,
we were not able to find a network architecture
that gave our adversary an advantage in this game,
even with 2-round DES ECB encryption. This is a
testament to the ”randomness” of DES.

C. Steganography Keras Model Diagram

Fig. 16. Detailed Representation of the Full Encoding Network

12

ACKNOWLEDGMENT
REFERENCES

[1] M. Abadi and D. G. Andersen. Learning to Protect Communi-
cations with Adversarial Neural Cryptography. ArXiv e-prints,
October 2016.

[2] ankeshanand. Adversarial Neural Cryptography in TensorFlow,
2015.

[3] Shumeet Baluja. Hiding images in plain sight: Deep steganog-
raphy. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages 2069–
2079. Curran Associates, Inc., 2017.

[4] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training
deep neural networks with weights and activations constrained
to +1 or -1. CoRR, abs/1602.02830, 2016.

13

