Cryptographically Secure Dark Pools for
Anonymous Financial Transactions

Shreyan Jain, Ajinkya Nene, Josh Noel, Advaith Anand
May 16, 2018

Abstract

Dark pools are an essential component of the modern financial ecosys-
tem that enable investors to hide information about their transactions
from the investing public. However, transaction information is not kept
anonymous from dark pool operators, who can thereby trade on that in-
formation and adversely affect clients. To secure against such information
leakage, we design and implement a cryptographically secure dark pool
that allows for fully anonymous financial transactions. We define a sub-
scription protocol that allows users to join the dark pool and encrypt
messages to each other, and we use homomorphic encryption along with
multiparty computation to securely match orders. Assuming semi-honest
adversaries, our system protects against transaction data leakage and pro-
vides strong anonymization guarantees to clients. Our implementation for
the secure dark pool can be found on https://github.com/JoshNoel/Secure-
Dark-Pool.

1 Motivation

In the current financial ecosystem, there are two main methods for trading
securities: lit markets or dark pools. Lit markets are public exchanges like the
NASDAQ or NYSE where all orders and transactions are issued to a publicly-
available orderbook [1]. For most traders, revealing their positions such as ”buy
100 shares of APPL” does not affect how the price on their positions are locked
in. On the other hand, when an institutional trader such as a major hedge fund
submits a large transaction such as ”buy 100,000 shares of APPL” the size
of their position adversely affects how their position is locked in. Public order
books allow other traders to observe the large order, leaking the firm’s alpha
and potentially leading other firms to begin buying APPL as well. This may
result in an increase in the price of APPL, making it incredibly expensive for
the original investor to lock in their position.

To avoid this problem, institutional investors use dark pools, which are trad-
ing exchanges that are not accessible by the investing public and keep their order
book hidden. These dark pools are operated by a few companies that perform

private order matching between a select group of clients. By making the order
book inaccessible to the general public, dark pools allow investors to minimize
the market impact of moving large volumes of securities in single transactions.
This hiding property makes trading in these ”dark” exchanges quite lucrative
for investors, and as a result dark pools now account for approximately 10-20%
of total equity trading volume [1].

Even though dark pools provide anonymity from the general public, they
are still limited by the need to place full trust in the dark pool operators them-
selves. This can lead to major security concerns. In one instance, a major dark
pool operator, ITG, used information from unusually large orders for certain
securities along with data on returns for certain investors to make extremely
profitable trades for themselves [2]. Such data exposure allows operators to
adversely affect final execution prices for their own clients.

To address this issue, we propose a cryptographically secure dark pool that
allows for truly anonymous financial transactions. With our proposed system,
dark pool clients can be fully confident that information about their positions
is hidden from everyone except for the entity they actually engaged in a trade
with. In particular, our system was designed with the following security goals
in mind:

e Allow investors to submit encrypted orders to a central server without
leaking any information about the security being traded, the direction
(buy/sell), or the transaction volume to the server.

e Match entities with complementary orders (same security, opposite direc-
tions) without leaking any information to non-matching entities.

e Securely compute transaction volume acceptable to both entities.

e Ensure client anonymity over the course of their trading history.

2 Threat Model

We assume a semi-honest adversary threat model. Semi-honest adversaries are
entities that act according to system-defined protocols, but try to extract secret
information from all received messages [3]. For the central dark pool server, this
is a fair assumption to make since dark pool server code is publicly available and
attested, and since a trusted third party is assumed to run this server side code.
We also assume semi-honest clients that follow protocols defined by the server.
This assumption is reasonable since all clients who subscribe to the dark pool
are legitimate institutional investors who are verified by the server operator,
and since client behavior must conform to a small number of acceptable actions
delineated by the server.

Assuming semi-honest adversaries, we can form the following threat model
regarding our dark pool server:

e The dark pool server sends correct data back to clients during order match-
ing and volume computation but attempts to learn information about
proposed trades.

e Clients try to learn information about orders placed by other clients, even
when those orders do not match their own.

e Clients try to learn trading history of other anonymous clients.

e Clients try to associate entities in the dark pool with the actual institu-
tional investors they represent.

3 Cryptographic Preliminaries

Our system uses the well known RSA-OAEP cryptosystem for secure commu-
nication between clients via the dark pool server [4]. In addition, our system
also makes use of the following two cryptographic schemes.

3.1 Paillier Cryptosystem

The Paillier Cryptosystem is an asymmetric public key encryption scheme [5].
The scheme consists of the following three algorithms:

e Key Generation. Paillier keys are generated by choosing two large
random primes p,q of equal length. Then the values n = pg and A\ =
lem(p — 1,¢q — 1) are computed. Finally, an integer g is chosen from Z;,
such that n divides the order of g. This can be guaranteed by ensuring
that the inverse u = L(g* mod n?)~! mod n exists, where L is the func-
tion defined as L(u) = “=1. Then the public key is given as Pub = (n, g),
and the secret private key is given as Priv = (A,).

e Encryption. To encrypt some message m € Z,, the sender chooses a
value r uniformly at random from Z;. Then the ciphertext is computed
as Enc(m) = g™ - r"™ mod n?.

e Decryption. To decrypt some ciphertext ¢ € Z; , the recipient computes
the message as Dec(c) = L(c* mod n?) - y mod n.

We use the Paillier Cryptosystem because it has the additional property that
it is additively homomorphic under encryption. In other words, Paillier satisfies
the following two desired properties:

e Additively Homomorphic. Given any two messages mi,ms € Z,,
Enc(my) - Enc(msg) mod n? = Enc(m + mg mod n).

e Scalable. Given any message m € Z, and any nonzero number k € Z,
Enc(m)* mod n? = Enc(km mod n).

Note that these properties allow recipients of messages who don’t possess
the private key to compute on encrypted data without decrypting the cipher-
texts. Our protocol uses homomorphic encryption to allow servers to compute
on encrypted orders for order matching and to allow entities to compute on
encrypted transaction volumes for volume computation [8].

3.2 Secure Multiparty Computation

Secure multiparty computation (MPC) refers to a wide range of closely related
problems whose basic setting consists of n players P, ..., P, each holding some
secret piece of data x;. The central problem is for the players to compute some
function F(x1,x2,...,x,) on the data and receive the output without any player
P; learning any data share x; # x; (i.e. any input that is not their own). This is
typically achieved by some interactive protocol performed by the players that is
provably equivalent to each P; sending their share x; to some trusted third party,
who directly computes the function and returns the result to all players. MPC
is a well-researched problem in the security literature, with several different
published protocols for a wide range of basic functions F [6].

Our dark pool protocol takes advantage of one specific MPC protocol that
was designed to solve a well-known cryptographic problem known as the Million-
aire’s Problem. First proposed by Andrew Yao in 1982, the problem involves
two millionaires Alice and Bob who wish to determine which among them is
the richer without divulging their own actual wealth to each other. As a MPC
problem, this is equivalent to n = 2, F(x1,x2) = max(z1, z2) where max returns
the larger of its two arguments [7]. Many protocols have been proposed to solve
this problem, but we use one proposed by Lin due to its reliance on an addi-
tive homomorphic encryption scheme that can be easily supplied by the Paillier
cryptosystem that we use [9]. Note that our particular system actually needs to
compute the smaller of 1 and x5 for volume computation, but that is a quite
simple modification. The actual protocol is described in the later section on
Volume Computation.

4 System Design

We will consider our dark pool to run on an idealized central server, referred
to as the dark pool server. Each entity that will participate in this dark pool
(i.e. subscribe to the dark pool and request financial transactions) will be mod-
eled as a single client referred to as an entity. We also assume the dark pool
server maintains a global security parameter A that it shares with all entities
that subscribe to the dark pool. This parameter will be used to determine the
lengths of primes used in all secure communication via the Paillier and RSA
cryptosystems.

4.1 Ticker Embeddings

In order to encrypt and decrypt transactions, we need a suitable means to
represent the security (e.g. stock, option, currency) being traded. For this
purpose, we will maintain a unique mapping from the ticker or symbol for each
security listed on the dark pool to a unique number from 1 to K, where K is
some predetermined (A — 2)-bit number. This mapping could be realized as a
hash function or as a pseudo-random ordering of all possible tickers; our protocol
is implementation-agnostic as long as the mapping is injective (no two tickers
share the same embedding).

Moreover, we will add a sign to this mapped number to create a transac-
tion ID for each security, with a positive sign representing a request to buy
the corresponding security, and a negative sign indicating a request to sell the
corresponding security. For any order = (ticker, direction), we will use orderrp
to refer to the corresponding transaction ID. This mapping will be maintained
by the dark pool server. Upon subscribing to the dark pool, any entity will also
be able to download the mapping, allowing it to obtain the correct transaction
ID for any order.

4.2 Subscription and Key Generation

Whenever a new entity decides it wants to trade on the dark pool, it will go
through the following subscription procedure. First, it will be assigned a random
unique entity ID ¢ from the dark pool server. Next, it must generate a secure
RSA public and private key pair for itself by randomly sampling two primes p
and ¢ each A bits in size. It will then compute the public key (n,e) and publish
it on the central dark pool server, which stores a list of all subscribed entities’
public RSA keys. The entity will also compute its private RSA key d and store
that locally for decryption of all incoming messages. Finally, the entity must
compute a Paillier key pair for each other entity j in the dark pool. For each
entity 7, the new entity samples two new primes of size A bits p’ and ¢’, derives
a Paillier keypair (Pub;;, Priv;;) from the two primes, uses j’s public RSA key
(obtained from the dark pool server) to encrypt the private Paillier key, and
sends Pub;; along with Enc;(Priv;;) to the dark pool server, who stores Pub;;
and then forwards both to j.

Whenever an entity j gets a new key request of this format, it decrypts
Enc;j(Priv;;) using its private RSA key. If the key is valid (i.e. p’ and ¢
are distinct primes of size A bits), it accepts the key and (Pub;;, Priv;;) can
henceforth be used to encrypt/decrypt messages between ¢ and j. Otherwise,
it rejects the key and ¢ will have to repeat the process to communicate with j.
Either way, j notifies i of its response via the server.

4.3 Executing Transactions

Suppose entity ¢ now wishes to buy or sell some number V' of shares of security
S. In other words, it wants to perform the order X = (.5, dir) with volume V,

New Investor 1. Dark Pool Server

Store:

2. pK,
2.Compute PKjand | "~ ' . PKs: Public Paillier Key
SK; Baira 4b. Investor a
4. Compute Paillier 3. Entity PKs) E&a) :;uga‘b PUb:,a and
Key Pairs for all — - b - ub, . EnCPK (Priv.) 5. I;)ecrypt and
other entities and - PK, - Pub,, P ia” | validate
send for verification | 4a. - e X

Pub,, and - PK - Pub,, 5._a validates

EncPK(a) {Privl.ya)

5. avalidates

Figure 1: The Subscription and Key Generation Protocol

where dir is "buy” or ”sell.” This transaction is performed in two steps: first, a
suitable partner is found, and next the actual trade volume is computed. Our
protocol, thus, realizes each transactions as two steps: ”order matching” and
”volume computation.”

4.3.1 Order Matching

First, 7 obtains the transaction ID X;p for the proposed transaction X =
(S, dir) using the mapping downloaded upon subscription. Then, for each entity
Jj that ¢ has an active connection with, ¢ calculates X;p (mod n;;), where n;;
is taken from the public Paillier key Pub;;. Note that ord;p is a signed integer
between —K and K where K is of size A — 2 bits, and each n;; is an integer of
size A bits, so no two distinct transaction IDs will be mapped to the same value
by this modulo operation. Finally, i encrypts the value X;p (mod n;;) using
the public Paillier key Pub;; and sends Enc;;(X;p) to the dark pool server as a
transaction proposed to entity j. (Note that we use Enc;; to denote encryption
using the Paillier key agreed upon by entities ¢ and j and omit the modulus.)

Upon receiving proposed transactions from multiple entities, the dark pool
server runs the following matching algorithm. The server considers all transac-
tions proposed between each pair of entities ¢ and j. Suppose i proposed some
transaction Enc;;(Xrp) to j, and that j proposed some transaction Enc;;(Y7p)
to 7. Then the server will choose some random nonzero number k from Zy_ ,
compute the value E' = (Enci;(Xrp) - Enci;(Yrp))* (mod n?;), and send this
new value E’ to both ¢ and j. Each of ¢ and j will then compute Dec;;(E’) (mod
n;;) and if the decrypted value equals 0, both entities will be sure that their
two proposed transactions ”match” - in other words, they represent proposed
transactions for the same security but in different directions.

To see this, note that since the Paillier scheme is additively homomorphic, we
have that B = (Encij (X[D) . Encij (Y[D))k (mod TLZQ]) = (Eﬂcz‘j (XID + Y]D))k
(mod nZ;) = Encij(k(Xrp + Yip)). Thus Dec;j(E') = 0 (mod ng;) implies

Dec;;(Encij(k(Xip + Yip))) = 0 (mod n;;), or k(X;p + Yrp)) = 0 (mod n;;).
But because of how k was chosen, we must have k # 0 (mod n;;), so the two
proposed transactions X;p and Y;p will match if and only if they add to O.
But by construction of the ticker embedding, this is true if and only if the two
transactions X;p and Y;p represent different directions on the same security.
Thus our protocol performs matching correctly. At this point, the two entities
¢ and j can move on to the next stage, volume computation.

4.3.2 Volume Computation

Note that the matching stage only included computations involving the secu-
rity and direction. In this stage, the two paired entities ¢ and j complete the
transaction by agreeing upon an order volume and submitting the transaction
to their brokers. Note that this problem is essentially equivalent to the mil-
lionaire’s problem: assuming 7 and j each have some upper limit on the desired
transaction volume, the actual transaction volume is computed as the lower of
these two values without leaking the actual values to the other entity.

First both entities individually decide their desired maximum transaction
volumes. Call i’s desired volume z and j’s y. Note that both x and y are positive
integers. The entities then compute a length-n bit encoding of these values. In
other words, i calculates the binary representation * = x,x,—1 - - - 1 adding
leading 0’s if necessary, and similarly j calculates the binary representation
Y = YnYn_1 - y1. Here n is a globally defined parameter decided by the dark
pool server such that the maximum single transaction volume permitted is 2™.
Since typical transaction volumes never exceed 1 million, setting n = 20 would
be sufficient for this system.

Next, i generates a fresh Paillier key pair (Pub, Priv) of size A (call the
associated encryption and decryption functions Enc’ and Dec’). It then creates
a 2 by n table A by setting, for all 1 < i < n, Alz,][i] to Enc (0) and A[Z;][7]
to Enc(r) where r is some randomly chosen number and #; denotes the bit
complement of x;. The table is then sent by i to j via the dark pool server.
Upon receiving A, j creates n values ¢; using the following process: for each
1 <i<n,ify; =0, set ¢; to (Alyn][n] x Alyn_1][n—1]x - Aly; 1 1][i+1] x A[1][])*
where k is some randomly chosen number; otherwise, set ¢; to some randomly
chosen nonzero number. Then j randomly permutes the n values cy, ..., ¢, and
sends m(c1, ..., cn) to i via the dark pool server. Finally, i decrypts each c.(;) as
m; = Dec'(cr(;y) and checks if any m; = 0. If some decrypted value equals 0,
¢ concludes that x > y and notifies j that y is the agreed upon trade volume;
otherwise ¢ notifies j that « is the agreed upon trade volume and sends Enc;(z)
to j. At this point, the two entities can carry out the actual transaction via
their brokerages.

Note that 7 could lie in two scenarios. First, it turns out that = > y but 4
tells j that x was the lesser value. But this would fail immediately as j could
instantly detect that « > y upon decrypting Enc;(z). Second, it turns out that
x < y but ¢ tells j that y was the lesser value. This lie would go undetected
but ultimately causes ¢ to submit a larger transaction then it initially proposed,

which doesn’t adversely affect j in any way.

Finally, we prove that the above protocol correctly solves for min(x,). More
rigorously, we prove that z > y if and only if some c.(;) decrypts to 0. First,
assume there exists some c(;y such that Dec’(cr(;)) = 0. With all but negligible
probability, this implies that c. ;) was computed as

Ca(iy = (Alynlln] X Alyn—r]ln — 1] % - Alysa]li + 1] < ALJED" (1)

(a cr(;) that resulted instead by choosing some random value would have very
low probability of decrypting to 0). This also implies, by the way j assigns ¢;’s,
that y; = 0. Next, note that, for k > i, Alyx][k] = Enc'(0) whenever y, = xy,
and otherwise equals Enc/(r) where r is some random value. Then, for k& > i, let
r, be a random variable that equals 0 whenever y; = z; and otherwise equals
some random r. Similarly, A[1][i{] = Enc'(0) if and only if z; = 1, so define r;
to be 0 if z; = 1 and otherwise be some random r. Then we can write

Ded ((Alynl[n] x Alyn—1]ln — 1] x - x Alypn][i + 1] x A[Q[)*) =0 (2)
Dec ((Enc (1) x Enc' (rn_1) x - - - X Enc' (riy1) x End (r;))*) =0 (3)
Ded ((End (k(rn +rp—1+ ... + 141 +75))) =0 (4)

k(?"n+7"n_1+...+7"i+1 +7"1) =0 (5)

by the homomorphic properties of Paillier encryption. Since k is nonzero, with
very high probability the last equation holds if and only if each r; = 0. But this
is true if and only if xp, =y, for all i < k < n and z; = 1. Together, these facts
along with y; = 0 imply « > y as desired.

Next we prove the reverse direction. Suppose z > y. Let i be the first (i.e.
largest) index at which they differ, i.e. 2; = y; for all ¢ < j < n. Since y < «,
we must have y; = 0 and x; = 1. Then note that, since y; = 0, 57 will compute
c; as

(Alynl[n] x Alyn—1][n — 1] x - - -Afyisa]li + 1] x A[1][a)* (6)
But, for all i < j < n, z; = y; so we have A[y;][j] = A[z;][j] = End(0). And
since x; = 1, we have A[1][i] = A[z;][i] = Enc’(0) as well. Then we have

ci = (End (0) x Encd'(0) x - -- x Enc'(0))" (7)

By additive homomorphism, this becomes ¢; = Enc (k(04+0+...4+0)) = Enc'(0).
Then @ will decrypt cq(;) to 0 as desired.

4.4 Partial Order Filling

Note that our current protocol doesn’t allow the dark pool to fulfill large volume
orders by matching it with multiple orders. In other words, if i wishes to
sell 100,000 shares of some stock but the entity it matches with only wishes
to buy 100 shares, only part of i’s order will be filled. In this case, entity
¢ can simply propose the transaction again, repeating this process until the

Investor i

1. Obtain X, from
ticker embeddings

1. Ticker
Embeddings

Dark Pool Server

Investor j
2. Calculate and send 2
Ency(Xp(mod n,)) : Store:
EncU(XID(mod nU))

2, Compute _ Ticker Embeddings Order Proposals 3. E
Dec,(E')modn)==0 | 3 [List of Enc,(Xp(mod n,))

 E— (Stock, Hash(Stock)) 4. Compute
5. Send desired 5 A for all proposed orders 5 A Dec,(E")(mod n) == 0
volume, x, by .
creating table A 6. Decide on

6. a(c,...c.) 6. m(c,...c) | desired volume, y,

7. Check Dec'(t 1 | generatec, ...c
C...C and send
(c,-.c.)) 8. Encpy 8. Encfx) permutation

Figure 2: Order Matching and Volume Computation. Note that in this example,
Investor ¢ is sending volume and j is receiving, but the opposite could also
happen where j sends and ¢ receives volume. In this example, z < y, so i sends
Enc;j(z) in Step 8.

order is completely filled as a series of individual transactions. For performance
gains, the dark pool server will pair any proposed transaction with all other
transactions that "match” it instead of just one. This enables larger orders to
be split up into multiple transactions in parallel. Once i completes its full order,
it can simply withdraw its request for that order.

4.5 Reanonymization Protocol

In the current protocol, entities can associate certain information (i.e. which
entities are engaging in particular transactions) to the entity IDs. In order to
avoid any information leakage of this sort, the dark pool server will undergo a
re-anonymization protocol periodically (i.e. at the end of every day). In this
protocol, every entity will be assigned a new, unique, random entity ID, and
entities will undergo the subscription protocol all over again to generate fresh
RSA and Paillier keys.

5 Proof of Security

In the following subsections, we show that our protocol is provably secure in the
semi-honest adversary model.

5.1 Subscription

In the subscription protocol, each entity generates fresh RSA and Paillier keys
for secure communication. We prove that all keys generated this way are secure
in the semi-honest adversary model. First, note that RSA private keys are
generated locally by entities and kept on their own machines. Thus, RSA keys

are never compromised. Moreover, assuming a semi-honest server, we can be
confident that all entities will share the correct public RSA keys.

In the second stage of subscription, new entities generate fresh Paillier key-
pairs and send the public key along with the RSA-encrypted private key to
the server, which forwards it to the corresponding entities. Assuming the RSA
hypothesis, since RSA private keys are never compromised the server or any
unintended recipients will not be able to recover the private Paillier keys trans-
mitted in this way. Moreover, in the semi-honest adversary model, the server
does not manipulate data sent by entities or send fake data, so all entities that
receive encrypted Paillier keys can be sure the data originated from a valid en-
tity. Thus, the only Paillier private keys used by our system will be genuine
keys that are stored only by the two entities who use them to communicate.

5.2 Order Matching

In the first stage of transaction execution, entities send Enc;;(X;q) to the dark
pool server, where X4 is the unique embedding for transaction X = (.5, dir).
Note that if any actor can recover X;4, they can use the universal ticker embed-
ding to invert X;4 and learn both the security and direction. First, we show that
the dark pool server cannot recover X,q from Enc;;(X;q) except with negligible
advantage. This is true by the fact that the dark pool server never obtains the
private Paillier key Priv;;, and by the fact that Paillier encryption is IND-CPA
secure, so the server cannot distinguish between Enc;;(X,q) and Enc;;(X’) ex-
cept with negligible advantage, where X’ is any other valid transaction ID.

Next, we show that, except with negligible probability, an entity j cannot
recover X;q from (Enc;;(Xiq) - Encij(Yid))k unless X;q + Yiqg = 0. We refer
to this property as multiplicative hiding. Suppose X;q + Y;q # 0. Then j
receives (Enci;(Xiq) - Encij(Yia))* = Encij(k(Xiqa + Yia)) and thus can obtain
k(X;q+Yiq) mod n;;. Note that k is a value randomly chosen by the server and
thus not accessible to j. Observe that k(X;q+ Yiq) mod n,; is indistinguishable
from k'(X’'+Y;q) mod n;j, where k' = k(X;q+ Yiq)(X'+Yiq) ™! mod n;; and X’
is any valid transaction ID not equal to X4, whenever (X’ + Y;4) is invertible
mod n;;. Thus the value that j receives can be opened to any valid transaction
ID X’ such that (X’ +Y;4) is invertible mod n;;. This property holds whenever
(X' 4 Y,q) is relatively prime to n;;. But n;; = pg where p and ¢ are both
very large primes, so the value j receives can be opened to about % . q;—l of
all possible transaction IDs, or nearly all of them. Thus j cannot distinguish
between X;q and X’ except with negligible probability, which shows that the
order matching scheme hides all transaction information whenever orders fail to
match.

5.3 Volume Computation

Finally we show that the volume computation scheme is secure as well. Note
that for this scheme, i generates a fresh Paillier keypair and keeps the private key
secret. Now note that, under the semi-honest adversary model, both the dark

10

pool server and j receive the correct, unmodified table A from ¢. Since Paillier
encryption is IND-CPA secure, for any i neither the server nor j will be able
to distinguish between A[z;][i] = Enc'(0) and A[Z;][i] = End (r) except with
negligible advantage, so neither will be able to guess z; with probability greater
than 1/2 + negl. Then neither will be able to guess z with probability greater
than (1/24negl)™ ~ (1/2)™, which is no better than guessing « randomly. Thus
’s desired volume is secure under the semi-honest adversary model.

Next, we show that ¢ learns nothing more about y except for whether or not
it is less than z assuming a semi-honest j and server that correctly transmit all
values. Suppose 7 concludes x > y. Then ¢ received k values that decrypted to
0, where 1 < k < n. These k values correspond to the fact that there are exactly
k values of ¢ such that x; = y; for all ¢ < j < n and y; = 0. The only way this
is true is if the first £ — 1 bits of both z and y are 0, z,,_x = 1, and y,,_x = 0.
Note that entity ¢ learns nothing new about y from this: since it already knew
y < x and that the first £ — 1 bits of x were 0, it was necessarily true that the
first k bits of y were 0. Moreover, the other n — k values that i receives are
indistinguishable from random values under the IND-CPA property of Paillier,
since j uses exponentiation with a random exponent k. Now suppose ¢ concludes
x < y. Then i receives no values that decrypt to 0 and instead receives n values
that are indistinguishable from random values, telling it nothing about y.

6 Evaluation

6.1 Security Goals

As stated in our threat model, we are assuming a semi-honest adversary. With
this in mind, we succeed in achieving each of our stated security goals from Sec-
tion 1. First, through the use of Paillier and RSA-OAEP encryption, investors
can securely submit orders to the central server without leaking information
about their position. In addition, through multiplicative hiding, the system
hides all order information from non-matching entities, and through multiparty
computation, acceptable transaction volumes are computed without revealing
the desired volumes upfront. Furthermore, clients are only identified by their
randomly assigned entity ID assigned by the server and their public RSA keys,
guaranteeing them true anonymity when interacting with the system. More-
over, through the reanonymization protocol, our system gives dark pool clients
anonymity over the course of their trading history, as it is impossible to track
who belongs to which RSA public key after a key refresh.

6.2 Vulnerabilities

Although our system is provably secure in the semi-honest adversary model, we
now analyze some remaining security vulnerabilities in the system and possible
mitigations.

e DoS Attacks. Our system is certainly vulnerable to DoS or Denial of

11

Service attacks, in which one or more clients could spam the central dark
pool server with a series of order requests, increasing the load on the
server until it is finally brought down. This can be mitigated in two ways.
First, although we described the dark pool as a single server, in reality the
system would be practically realized as a distributed system running on
several servers, allowing the system to handle additional load. Second, the
system could set an upper limit on the number of allowed order proposals
per entity each day, limiting the total load on the system to an acceptable
amount.

e Fraudulent Order Requests. Even in the semi-honest adversary model,
clients can can obtain side channel information from the dark pool by sub-
mitting many trade requests and seeing which ones match to learn what
other entities are actively trading. One mitigation would be to have the
server flag an entity whenever it proposes a trade that matches but doesn’t
carry out the actual transaction. Since the server associates entities with
their true identities, they can penalize adversarial behavior by, for exam-
ple, banning the entity from participating. Note that entities could work
around this by proposing extremely small volume trades that cost them
very little, thus bypassing the flag and succeeding in the goal of identifying
other entities’ trades. Nevertheless, setting an upper limit on proposed or-
ders and a lower limit on transaction volume would make such adversarial
behavior less feasible.

e Malicious Server. Note that if we relaxed the semi-honest adversary
assumption, a malicious server could encrypt fake Paillier keys that it
generates itself and forward it to the entities. This would allow it to listen
to any orders sent by those entities, decrypt them, and obtain information
about those entities’ desired positions. Moreover, a malicious server could
also spawn fake clients to act as entities and perform fake transactions
with extremely high transaction volumes to learn everything about other
clients’ trading behavior. Our underlying assumption of a trustworthy
server makes such behavior highly unlikely.

6.3 Proof of Concept

Our implementation can be found at: https://github.com/JoshNoel/Secure-
Dark-Pool. Our current implementation supports an arbitrary number of clients
attempting to complete an arbitrary number of trades. We tested our proof
of concept implementation in a simulated environment in which fake clients
communicate with the dark pool server. The server and clients all run on the
same local machine, so network overhead is not tested. The current proof of
concept completely implements the system described thus far.

During the start of every key-refresh period, clients are allowed to register
for a set amount of time. When a client registers with their public key the
client assigns the server their UID along with a port number to which they

12

should establish a socket connection to the server through which all future com-
munication occurs. Once the registration period is over, the server launches a
subprocess for every client and assigns a client in every pair of clients to gener-
ate the pair’s Paillier key pair. Once the key exchange is over the server begins
accepting and processing trades.

In regards to performance, registration through key exchange scales linearly
with the number of clients registering as one client in every pair of clients must
generate a Paillier key pair. The generation and distribution of the Paillier key
pairs is the slowest part of this process. With two clients this takes 2.1 seconds
and with four it takes 3 seconds. Though slow, this process only occurs once
per key-refresh and can therefore be amortized across a long time-period.

The submission and matching of trades happens very quickly with 0.15ms
round-trip time from submission to match when complementary trades are sub-
mitted simultaneously. However, the performance and bandwidth requirements
of this step scale as n? where n is the number of outstanding trades since, for a
given client, the client process on the server must multiply every pair of trades
proposed by all other clients.

Volume calculation between matched entities is by far the slowest step dur-
ing the trading process, though it does take constant time. Within this step
both matched clients must calculate and send four rather large messages to the
other, two of which involve large homomorphic operations (specifically calcu-
lating the table A and values ¢;). In the benchmarks we ran, this took 3.2
seconds to complete, though this could be overlapped with the submission of
new trades. Moreover, in the future the server could be extended to support
clients computing the volumes for multiple trades at once.

7 Future Work

In the situation that our secure dark pool is deployed into the financial markets,
there may be a need to disclose trades after a period time as per SEC regula-
tions. To accomplish this, we would add a commitment scheme using Pederson
commitments that allows for the secure logging of transactions on the dark pool
server. Whenever the SEC requires logs of transactions that went through the
dark pool, the server would ask for all entities to reveal their commitment keys
to decrypt the log and submit it to the SEC for filing.

Next, our current implementation has large bandwidth requirements to trans-
mit ciphertexts and has performance bottlenecks due to slow encryption pro-
cesses like homomorphic encryption. In the future, we will focus on making our
system more performant by reducing unneeded complexity in our encryption
protocols and reducing bandwith requirements by reducing the amount of data
required for the system to operate.

Finally, our threat model assumes semi-honest adversaries. To make our
security guarantees stronger, we could allow for clients that deviate from client
specifications, such as clients that submit high numbers of erroneous requests to
deny access to the system. We will do this by adding more checks in our system

13

against clients to validate that they act according to correct and predetermined
behavior.

8 Conclusion

In this project, we developed a dark pool system which allows for truly anony-
mous transactions. Current dark pool protocols allow the operator of a dark
pool to see all of the order information of clients using the exchange, which can
result in the operators trading on this private information. Our system allows
for secure communication through encryption, complementary order matching
through homomorphic encryption, and transaction volume computation through
a secure multi-party computation protocol. Using our suite of protocols, we are
able to guarantee information security for dark pool clients against semi-honest
adversaries. We were able to successfully implement a proof of work of our
system and simulate active trades with multiple clients, showing that such a
system could be practically feasible with some performance improvements.

9 Acknowledgments

We would like to thank our instructors, Prof. Ronald Rivest and Prof. Yael
Kalai for running a highly instructive and interesting class as well as for their
guidance on our project. In addition, we would like to thank the 6.857 TA’s for
their useful advice on how to approach our final project.

References

[1] Picardo, CFA Elvis. “An Introduction to Dark Pools.” Investopedia, Investo-
pedia, 5 May 2017

[2] Levine, Matt. “ITG Hid a Secret Trading Desk in Its Dark Pool.”
Bloomberg.com, Bloomberg, 12 Aug. 2015

[3] C. Hazay, Y. Lindell: A Note on the Relation between the Definitions of Se-
curity for Semi-Honest and Malicious Adversaries. IACR Cryptology ePrint
Archive 2010/551

[4] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure
under the RSA assumption. Journal of Cryptology, 17(2):81— 104, 2004.

[6] Paillier, Pascal (1999). ”Public-Key Cryptosystems Based on Compos-
ite Degree Residuosity Classes”. EUROCRYPT. Springer. pp. 223-238.
doi:10.1007/3-540-48910-X_16.

[6] P. Bogetoft, D. L. Christensen, I. Damgard, M. Geisler, T. Jakobsen,
M. Kroigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M.

14

Schwartzbach, and T. Toft, “Secure multiparty computation goes live,”
Cryptology ePrint Archive, Report 2008/068, February 2008.

M. Jakobsson and A. Juels, “Mix and match: secure function evaluation via
ciphertexts,” in Asiacrypt ’00: proceedings of the 6th international confer-
ence on the theory and application of cryptology and information security,
London, UK, 2000, pp. 162-177.

Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. A survey
on homomorphic encryption schemes: Theory and implementation. CoRR,
abs/1704.03578, 2017.

Y. Lin and W.-G. Tzeng. An efficient solution to the millionaires’ problem
based on homomorphic encryption. In ACNS, 2005.

15

