
Security Analysis of Monero’s Peer-to-Peer System

Jeffrey Hu
Marcin Jachymiak

Israel Macias
Yao E. Siabi

1. Introduction

Every cryptocurrency has an underlying peer-to-peer
networking system that provides other pieces of the soft-
ware with as fair and complete of a view of the network as
possible. Nodes in the network need to receive all relevant
messages (transactions and new blocks) in a timely manner
in order to prevent potential attacks from malicious nodes.
Prior work [2, 3] has demonstrated one such attack called an
eclipse attack on Bitcoin and Ethereum. They were able to
take over all incoming and outgoing connections of victim
nodes with relatively little computation resources. Cryp-
tocurrencies must defend against this by taking precautions
in how they form their peer-to-peer networks.

In this work, we explore the potential for eclipse at-
tacks on the cryptocurrency Monero. Monero is a open-
source [1] cryptocurrency that places a greater emphasis on
anonymity than most other cryptocurrencies. Implementing
the Cryptonote protocol, it uses ring signatures and stealth
addresses to obfuscate the sender, recipient, and amount
of every transaction by default. Like all cryptocurrencies,
it relies on a P2P network to distribute information about
its blockchain. We chose Monero specifically because its
design has many similarities to Bitcoin, but unlike several
other cryptocurrencies, it is not a direct copy of Bitcoin. In
this paper, we first present prior work on eclipse attacks and
their countermeasures for Bitcoin and Ethereum. Then, we
describe Monero’s P2P network in detail. Lastly, we high-
light the strengths of Monero’s system design and propose
potential weak spots and countermeasures.

Our work was done by analyzing the Monero
source code found on Github with the commit hash
4b728d7dd48584987f53995a141baac4f886f017.

2. Prior Work

Heilman et al[2] first proposed the eclipse attack and
possible countermeasures in 2015. Since then, successful
eclipse attacks have been demonstrated against two of the
largest cryptocurrencies: Bitcoin and Ethereum. The un-
derlying strategy in these attacks was to first isolate the vic-
tim by controlling all outgoing and incoming communica-
tion. Then, by filtering the information from the rest of the

Figure 1. P2P network after an eclipse attack. Victim node’s view
of the network is provided by malicious nodes.

network, the attacker could distort the victim’s view of the
blockchain and subvert its computing power for further at-
tacks.

2.1. Eclipse Attacks on Bitcoin

In Bitcoin, nodes are identified by their IP addresses.
Each node randomly selects 8 longterm peers for outgoing
connections and accepts up to 117 peers from unsolicited
incoming connections. When the attack was first proposed,
nodes selected their outgoing connections from a ”tried” ta-
ble and were biased towards newer timestamps. They also
published their ”tried” table to all outgoing and incoming
connections. Bitcoin also stores information about peers it
has heard about, but has not connected to, in a ”new” table.

The attack was to connect with as many of the victim’s
117 available incoming connections as possible and over-
load it with IP addresses of even more attacker-controlled
nodes. This gradually filled all of the victim’s incoming
connections and their ”tried” table. Then, when the victim
node eventually restarted, they chose, with high probabil-
ity, 8 attacker-controlled addresses as outgoing connections.
Now controlling all outgoing and incoming connections, the
attacker successfully eclipsed the victim node.

To counter this, Heilman et al [2] proposed many so-
lutions, three of which were implemented. In the first
implemented solution, he recommended random selection
of peers from the ”tried” table. This made it more diffi-

1

Figure 2. Eclipse attack on Bitcoin, where peer tables are popu-
lated with both malicious and trash addresses from malicious in-
coming connections.

cult for attackers guarantee their nodes would be selected
upon restart. Second, he recommended deterministic ran-
dom eviction for the tried table. This prevented attackers
from completely taking over the tried table by providing IP
addresses with the freshest timestamps. Lastly, he recom-
mended simply increasing the size of the peer tables.

2.2. Eclipse Attacks on Ethereum

Since the design of Ethereum’s P2P system differs
greatly from Bitcoin’s, many assumed it to be more secure
against eclipse attacks. For starters, Ethereum required thir-
teen outgoing connections as opposed to Bitcoin’s eight.
It also used a cryptographically encrypted P2P message
scheme instead of direct IP-to-IP communication. This
made it more secure against man-in-the-middle attacks and
attacks on the internet’s routing protocol.

Still though, Marcus et al [3] found Ethereum’s P2P sys-
tem vulnerable to eclipse attacks. Ethereum used node IDs
instead of IP addresses to identify nodes. This allowed
one machine to run multiple nodes and enabled attackers to
mount eclipse attacks on Ethereum with far fewer resources
than were required on Bitcoin. Ethereum also made no dis-
tinction between outgoing and incoming connections. This
allowed attackers to eclipse other nodes exclusively with
unsolicited incoming connections.

Implemented countermeasures included modifications to
the node identification structure and communication proto-
col.

2.3. Implications of Eclipse Attacks

The following section describes further attacks that can
be performed once nodes have been eclipsed, as shown by
Heilman, et al [2].

Selfish-mining By filtering all blocks from the network
except their own, an attacker can force eclipsed miners to
work on only their version of the blockchain. This increases
the attacker’s mining power and makes it more likely that

Figure 3. N-confirmation double spend. Eclipsed merchant and
miners are presented with a fork created by eclipsed miners, con-
taining a transaction they will believe is confirmed. On the ”real”
chain, the adversary can double-spend the merchant without him
knowing.

their chain becomes the main chain.
51% attacks If the attacker manages to not just eclipse a

few miners but fully partition the network, they can guaran-
tee the two partitions never work on each other’s chains.
Then, the attacker with less than 50% of the compute
power only has to out-compete the partitions individually
to rewrite the blockchain.

N-confirmation double spend Merchants typically wait
for N blocks before considering the transaction as real. If
the attacker can eclipsed enough miners to build N blocks
on a fork, they can get an eclipsed merchant release goods
while double-spending on the real network.

3. Monero’s Peer-To-Peer System
In this section we describe how the Monero source code

manages its interaction with peers on the network.
Monero’s P2P system primarily focuses on managing

one type of data-structures: peer-lists.The system maintains
a gray-list, a white-list, and an anchor-peer-list. It also uses
other system parameters (e.g. the maximum number of in-
coming connections) that determine some of its behavior.

3.1. Dropping a connection

Periodically, the Monero P2P system may notice un-
wanted behavior from its peers. This includes: not main-
taining a stable connection, not fulfilling a request, send-
ing invalid transactions, sending invalid blocks, or breaking
some other consensus rule. To deal with these peers, Mon-
ero implements a strict security policy. The system drop
connections and can potentially takes further action.

If the peer’s failure breaks a consensus rule (e.g. it sends
transactions with invalid signatures) then it is assumed that
other data sent from the peer may also be invalid. In some
cases, the system counts failures for the hostname associ-

2

ated with that peer and bans the hostname after a certain
threshold. In other cases, like a block validation failure, the
system deletes the rest of the blocks it has received from
that peer and has not checked yet. These measures work
to prevent denial-of-service attacks. For an example attack
prevented by these mechanisms, consider a malicious node
can send many invalid transactions and blocks to its peers
with the goal of causing its peers to waste time trying to
validate incorrect information.

If the peer’s failure seems to take the form of a live-
ness/availability issue, then the system often gives that node
the benefit of the doubt and simply disconnects from the
peer without banning it or deleting the data received. One
example of such a failure is a RPC request that takes too
long to complete.

3.2. Peer-lists

There are two main peer lists that Monero references
throughout its source code, very similar to Bitcoin’s tried
and new tables that were described earlier. These are the
gray and white peer lists.

The gray-list maintains a list of peers who are known, but
have never benn connected to. Peers are identified by their
IP address and by a peer id which is randomly chosen at
start-up. The maximum size of the gray-list is 5000 peers
by default.

The white-list maintains a list of online peers. A peer
is added to the white-list whenever a successful handshake
and connection is established to a non-anchor peer during
gray peerlist housekeeping().

Finally, Monero also maintains a list of anchor peers.
This list contains all the peers to which the node has an
outgoing connection to. Connections to these peers are pri-
oritized in the event that the node restarts.

3.2.1 Connecting to a peer

Upon successfully making a connection and completing a
handshake with a peer, the P2P system merges the peer’s
white-list with its gray-list. If the peer was not previously
in the node’s white-list (or was in the gray-list), then it is
added to the white-list.

3.3. Initialization and Startup

Upon initialization the P2P system first loads a hard-
coded set of hostnames associated with trusted seed nodes.
The system then resolves the hostnames to IP addresses us-
ing DNS. If the number of successfully resolved hostnames
is too low (less than 12) then a small number of seeds with
hard-coded IP addresses are also used as seeds.

(These nodes are presumably run by some trusted third
party. Their role is to bootstrap new Monero nodes with list
of peers that they can connect to.)

Then the system either loads an existing configuration,
or the default configuration.

After choosing an initial set of IP addresses and a con-
figuration, the system starts up 3 threads. One thread sim-
ply counts the number of incoming and outgoing connec-
tions and maintains those values. Then the system starts an
idle worker thread and an on idle thread.

3.4. Handling idle connections

Once a second, the on idle thread drops idle connec-
tions. To do so, it iterates through all open connections and
calculates the time since it has last received a message from
that connection. If the time elapsed is past a certain thresh-
old, it is dropped.

3.5. The idle worker

The idle worker performs the following tasks once
every second.

• peer sync idle maker sends requests to peers
that facilitate the syncing between nodes. In these mes-
sages, nodes send a copy of their peer-list, their cur-
rent blockheight (the number of blocks in their stored
blockchain), their current cumulative difficulty (the
”amount” of work they see on their chain), and their
current version (used to indicate forks for upgrades).
This information can be used by the node to request
further information from their peer. For example, if
its peer’s blockheight is greater, a node will request
that the peer send it those new blocks. The mechanism
for handling peerlists is relevant to the remainder of
this project and is described in detail in a section on
gray peerlist housekeeping .

• store config persists all the information kept by
the p2p system to a configuration file. This file is used
to restore a node’s configuration and known peers if it
has to restart. When a node restarts, it first rebuilds its
peer-lists from this file and then attempts to reestab-
lish its outgoing connections. Once this is finished, the
node can function as normal.

• connections maker makes sure that a good num-
ber of connections are being made to the network.
The connections maker will (in order) attempt to con-
nect to the following types of peers: exclusive peers,
seed nodes, priority peers. Exclusive peers and prior-
ity peers are not set by default so we ignore them in
our analysis. Furthermore we note that there is, by de-
fault, a maximum of 8 outgoing connections and no
incoming connections. Both of these commands can
be tweaked by the node.

After this step, if the maximum number of outgoing
connections is not reached, then the P2P system makes

3

Figure 4. gray peerlist housekeeping procedure in-
voked to promote a gray peer to a white peer.

more connections in the following way. First, it checks
what fraction of its current outgoing connections are to
nodes in its white-list. If it is under an expected frac-
tion (default is 70 percent), then it attempts to connect
to anchor peers, then white-listed peers if necessary,
and finally gray-listed peers if necessary. Otherwise,
if the fraction of outgoing connections with white-list
peers is large enough, then the node will try connect-
ing to gray-listed peers, and then white-listed peers.
This helps encourage openness in the network and fa-
cilitates connections with newer nodes. If at the end of
this round of the process, the node has not reached the
maximum number of connections, it will try to connect
to more seed nodes instead.

• gray peerlist housekeeping provides a
mechanism for a node to grow its white-list by gaining
new successful connections. It randomly selects a
peer from the gray list, and attempts to establish a
connection and handshake with the gray list peer.
If successful, that peer is promoted to the whitelist.
We note that during a successful handshake, the gray
peer’s white-list is appended to the node’s white-list.
If the handshake is not successful, the gray list peer is
discarded.

If the either peerlist is full, the entries in it are sorted
in order of timestamp of their latest message and peers
farthest back in time are removed first.

While analyzing Monero’s source code, we noticed
some interesting details regarding peer-list mainte-
nance that could potentially facilitate an eclipse attack.
In particular, we investigate the timestamp-based evic-
tion policy and the method of random peer selection
for maintenance in our analysis.

4. Potential Vulnerabilities
4.1. Timestamp-based Eviction

We noted that the attacks on Bitcoin’s network exploited
several weaknesses in its P2P system, one of which was the
bitcoin eviction mechanism. [2]. When a Bitcoin node’s
tried table was full, 4 random addresses were chosen, and
the oldest was evicted. This added bias towards fresher ad-
dresses and someone could estimate the probability with
which addresses were going to be to be evicted.

In Monero’s eviction policy, peers with the oldest times-
tamps are evicted. This suggests the following:

1. Multiple peers handshaking with the host node can fill
the gray peer-list with their own crafted white-lists.

2. Since establishing a connection to a host node adds the
peer to the host’s white-list, a host’s white-list can be
populated with nodes that simply form an incoming
connection, without the host’s permission.

3. By ensuring that a remote node has successfully sent a
message a host/public node recently, we can be more
certain that their address is contained within the host
node’s white-list.

4.2. Biased Peerlist-Entry Selection

In connections maker under Section 3.5 above, we
describe how the P2P system chooses a peer-list to look for
new connections in. Now we describe how it chooses indi-
vidual entries from a peer-list when it makes a connection.
In the case of the gray-list and anchor-peerlist, a index is
chosen uniformly at random in the range of indices for that
list.

The pseudo-code for that selection looks like the follow-
ing:
crypto::rand<size t>() % peers count
We simulated this function with a Python script, and as

expected the results give a uniform distribution across in-
dices in the given range.

In the case of the white-list however, Monero’s
code employs a slightly different and unexplained
method for choosing a peer. It uses a function
get random index with fixed probability to
generate an index. It then sorts the white-list by timestamp,
and chooses the value at the ”random” index.

The following is pseudo-code for this random-index
function:

x = rand ()%(max index + 1) ;
r a n d i n d e x = (x∗x∗x) / (max index ∗max index) ;

We implemented a Monte-Carlo simulation of this func-
tion in Python and show a distribution of the results in fig-
ure: 5. We see that the first index is heavily skewed, mean-
ing that a node is much more likely to pick the peer from

4

Figure 5. Probability distribution of indices returned with
max index set to 45, after 100,000 trials

its white-list which has most recently sent a message to it
successfully.

4.3. Are these vulnerabilities?

Although removing the two features described above
was suggested as a countermeasure for the Bitcoin eclipse-
attack vulnerability, we suspect the addition of other secu-
rity mechanisms in Monero decreases the risk created by
them. In the next section we describe these security mecha-
nisms, and end with our final analysis of the P2P system.

5. Security Mechanisms
In this section, we describe certain security mechanisms

we found implemented in the Monero source-code, many of
which were suggested as countermeasures against eclipse
attacks by Heilman, et al. [2].

5.1. Feeler Connections

Feeler connections are a eclipse-attack countermeasure
which Monero implements, in which the gray-list is peri-
odically cleared of ”trash addresses.” The P2P system peri-
odically attempts to connect and handshake with a peer on
the gray-list. If this process fails, then the peer is removed
from the list. This is described in the section on gray-list
housekeeping.

This feature decreases the proportion of bad addresses
stored in the gray-list, and therefore increases the probabil-
ity the node will connect to non-malicious peers.

5.2. Anchor Connections

Anchor connections persist upon node reboot. These
connections are stored in a separate anchor peerlist where
upon restart, a node establishes 2 outgoing connections to
nodes in this list. This is the default value in Monero’s
source code.

Anchor connections reduce an attacker’s probability of
successfully hijacking all of a victim’s outgoing connec-
tions as the attacker must be an anchor connection.

This countermeasure is crucial. As long as a node main-
tains a connection to at least one honest peer, and therefore
keeps it as an anchor peer, it will not be eclipsed.

5.3. Limiting Connections by IP and hostname

By default, Monero limits the number of incoming con-
nections from any IP address to 1. This prevents a Sybil-
attack, in which an adversary could simply launch many
connections from the same IP in hopes of overcoming the
victim. The Monero P2P system also stores a list of host-
names it is has banned, and refuses to make new connec-
tions with peers with that hostname.

5.4. Limiting Number of Incoming Connections

By default, Bitcoin nodes are limited to 117 incoming
connections, which any peer can connect to. This was a
critical vulnerability that allows malicious nodes to fill a
Bitcoin node’s tables with trash addresses. A Monero node,
on the other hand, will by default accept no incoming con-
nections. For this reason it is very difficult to eclipse non-
public nodes as without many open incoming connection
slots, it is hard to populate a victim node’s peerlists with
trash addresses.

6. Results

6.1. Suggested Future Work

Although we provide a detailed description and analysis
of Monero’s P2P system, there is much we could not do
in the timespan of our class project that could have proved
useful to anyone interested in the security of this system.

For one, we suggest an experiment to see the potential
negative ramifications of timestamp-based eviction. In the
Bitcoin eclipse-attack, timestamp-based eviction is abused
because attackers can spam a node with many new incoming
connections, each sending many trash addresses. In Mon-
ero, the grey-list is continually being cleared of trash, and
attackers are naturally limited by a default maximum of 8
incoming connections. We suspect it would be useful to run
experiments in which we calculate exactly the rate at which
peers are cleared from the gray-list, and the rate at which an
adversary could flood the gray peer-list with new entries.

We do not believe the biased index generator in section
4.2 is a vulnerability, but we suspect that selecting an ele-
ment uniformly-at-random may increase the security of the
system slightly, with little downside. It removes the possi-
bility of an attacker cleverly spamming a node with mes-
sages, so that one of the attacker’s addresses is picked with
higher probability. Since the probability is really only much

5

greater for the very first index (sorted by timestamp), this
attack is not very effective.

6.2. Conclusion

In this project, we did a thorough analysis of the Mon-
ero code base. We analyzed the P2P layer of Monero, col-
lected our findings, and documented the security policies
of the system. Then, we used the prior work done on at-
tacks on Bitcoin[2] and Ethereum[3] to look for common
vulnerabilities and countermeasures. We largely found that
Monero adequately implements several countermeasures to
eclipse-attacks.

References
[1] Monero github source code. https://github.com/

monero-project/.
[2] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg. Eclipse

attacks on bitcoin’s peer-to-peer network, 2015.
[3] Y. Marcus, E. Heilman, and S. Goldberg. Low-resource

eclipse attacks on ethereum’s peer-to-peer network. Cryp-
tology ePrint Archive, Report 2018/236, 2018. https:
//eprint.iacr.org/2018/236.

6

https://github.com/monero-project/
https://github.com/monero-project/
https://eprint.iacr.org/2018/236
https://eprint.iacr.org/2018/236

