
Security Analysis of Bluetooth Technology

Daniel Filizzola
danifili@mit.edu

Sean Fraser
sfraser@mit.edu

Nikita Samsonau
samsonov@mit.edu

Abstract

With the increasing popularity of wireless communica-
tion systems, Bluetooth has become one of the most
widely used short range wireless protocols. Unfortu-
nately, due to the nature of wireless communication net-
works, Bluetooth has security vulnerabilities particularly
through eavesdropping. Despite newer and more secure
versions of Bluetooth being released, older versions such
as Bluetooth 4.0 and 4.1 are still widespread all over the
world. After thoroughly exploring the current Bluetooth
security model and reasons for potential vulnerability,
this report performs a comparative analysis of different
Bluetooth security attacks, extending them and applying
them to readily accessible devices, and offering counter-
measures. Based on our results and discussion, it is clear
that Bluetooth is a widespread technology with signifi-
cant security vulnerabilities in the real world today.

1 Introduction

Wireless communication systems and their interconnec-
tions by networks have become increasingly popular in
recent years, particularly with the surge of interest in
the Internet of Things (IoT). The most common wire-
less communication systems use Radio Frequency (RF)
waves, which can penetrate objects and operate without
direct line of sight between devices. Despite being easier
to use than wired communication, this makes the com-
munication more susceptible to eavesdropping or disrup-
tion.

Bluetooth [1] is a short-range wireless data transfer
that operates in the 2.4GHz frequency range with mul-
tiple data transfer rates possible with real-time two-way
rates up to 24Mb/s. Nowadays, Bluetooth devices are
seamlessly integrated into our daily lives, in the form
of headsets, smart phones, mice, keyboards and portable
speakers, and are widely used all over the world. Fur-
thermore, hands-free voice communication devices are

becoming increasingly more popular in cars for safety
reasons or homes for convenience. Given that Bluetooth
devices are so widespread, it is often the case that some
security principles are neglected and vulnerabilities are
exposed.

Despite the Bluetooth Special Interest Group releas-
ing newer versions of Bluetooth such as version 5.0 (cur-
rently compatible with newer technologies such as Apple
AirPods), there is still a huge number of devices in use
that use older versions of Bluetooth, such as Bluetooth
Smart / Bluetooth Low Energy in version 4.0 and 4.1 [2].
In fact, it is estimated that there are over 4 billion Blue-
tooth Low Energy (BLE) enabled devices in 2018 (using
version 4.0 or 4.1) [3].

In this report, we illustrate the fact that Bluetooth is a
widespread technology with real security vulnerabilities
and implications for their practicality in the real world.
By engaging with previous work done in this area, we
explore various potential vulnerabilities in Bluetooth net-
works and apply extensions of various attacks to arbitrary
Bluetooth devices and evaluate the results. In one case,
we find that the results are critical in which we eaves-
drop and decrypt computer mouse location data, thereby
enabling a third-party to extract sensitive information.

In Section 2, we give a general overview of Bluetooth
security. In Section 3, we explore why there is potential
for the Bluetooth medium, protocols, and parameters to
exploited. In Section 4, we introduce various Bluetooth
attacks done in previous work, as well as the two specific
attacks we focus on in Section 5 and Section 6. These
sections explain in detail our comparative analysis of the
attacks and our extensions to them. We discuss the re-
sults of our attacks and how practical they are in Section
7. Finally, in Section 8 and 9 we finish with suggestions
for future work in this area and our concluding remarks.

2 Overview of Bluetooth Security

This section provides an overview of the security goals
and mechanisms as provided by the Bluetooth standard.
We aim to illustrate the strengths and limitations of the
current standard of Bluetooth security.

Bluetooth devices that communicate with each other
form a piconet. A piconet master is a device that ini-
tiates a connection and there can be up to seven slaves
in the piconet. All communication has to go through
the piconet master however. Slave devices (e.g. head-
set, mouse, keyboard) connect with master devices by a
pairing process as shown in Figure (2) below in Section
2.2.2.

2.1 Security Goals
There are five basic security goals and principles speci-
fied by the Bluetooth standard [4]:

• Authentication: One of the goals of Bluetooth is
to be able to verify the identity of communicating
devices with a unique Bluetooth address. Bluetooth
does not provide native user authentication.

• Confidentiality: Another goal is to prevent the dis-
closure of information caused by eavesdropping by
ensuring that only authorized devices can access
and view transmitted data.

• Authorization: The Bluetooth standard sets out to
allow the control of resources by ensuring that a de-
vice is authorized to use a service first.

• Message Integrity: Messages sent between two
Bluetooth devices should not be modified in transit.

• Pairing/Bonding: The last goal of the Bluetooth
standard is to create one or more shared secret keys
between two devices and storing them for future use
in subsequent communications.

2.2 Security Mechanisms
Bluetooth implements the above security goals with sev-
eral mechanisms. Some related aspects of the Bluetooth
protocol to provide mechanisms for the security goals as
outlined below.

It is worth noting that for this report the difference
between Bluetooth and Bluetooth Low Energy (BLE) /
Bluetooth Smart / Bluetooth 4.0 protocol. The key differ-
ence is the low power consumption of BLE, and the re-
sult of this is that is a different protocol with different se-
curity goals, mechanisms and vulnerabilities. Older and
newer versions such as Bluetooth 4.2 exist, but many of
the vulnerabilities in the mechanisms are specific to one

version. General aspects of the Bluetooth protocol are
described below as security mechanism.

2.2.1 Bluetooth Device Address

Every Bluetooth device has a unique 48-bit number
called a Bluetooth Device Address or BD ADDR, used to
identify the device. The structure of the address is shown
in Figure 1. This is similar to a MAC Address for Ether-
net and Wi-Fi networks, however there are some key dif-
ferences. Unlike a MAC Address, the BD ADDR is used
throughout the Bluetooth protocol, for identity, authen-
ticity, and low-level communication. For example, all
devices transmit using the master’s BD ADDR.

As Figure 1 illustrates, the BD ADDR is split into three
parts:

• the 16-bit Nonsignificant Address Part (NAP)

• the 8-bit Upper Address Part (UAP)

• the 24-bit Lower Address Part (LAP)

The first three bytes (NAP and UAP) refer to a
company id or the manufacturer assigned part, and is
publicly available. The last three bytes (LAP) are the
company assigned identifier. Because the LAP is
widely used throughout the Bluetooth protocol, it is im-
portant that it remains private. However, when Bluetooth
devices are in Discoverable Mode, the BD ADDR adver-
tised, and even when not in this mode, Bluetooth pack-
ets are sent with the LAP of the device in plaintext, or
if in a piconet, the LAP of the master. Knowledge of the
LAP and UAP allows for the passive monitoring of pack-
ets and potential for attacks depending on the encryption
used.

Figure 1: The format of the 48-bit Bluetooth Address

2.2.2 Pairing

In order to establish a Bluetooth connection, the involved
devices need to start a pairing protocol in which they cre-
ate and store the link keys that will be used for later data
encryption (2.1).

Bluetooth BR/EDR, the standard Bluetooth, utilizes
Secure Simple Pairing (SSP) since Bluetooth version 4.0
[2].

2

Bluetooth Low Energy before version 4.2 uses LE
Legacy Pairing. BLE devices with version 4.2 and be-
yond utilize the protocol LE Secure Connections, which
is similar to the SSP protocol. It was introduced to pro-
vide more security against MITM and passive eavesdrop-
ping attacks [1].

2.2.3 Association Model

Bleutooth BR/EDR SSP and LE Secure Connections im-
plement four association models: [4]:

• Numeric Comparison: Both devices’ display
show a randomly generated six-digits number. The
users of these devices confirm that these numbers
match by clicking either a ”yes” or ”no” button. If
both users respond with ”yes”, the pairing process
is initialized.

• Passkey Entry: The display of one of the devices
shows a six-digit PIN and the other user of inputs
the same PIN with a keyboard in order to start the
pairing process. Alternatively, if both users have
a keyboard, inputting the same six-digits PIN will
have the same effect.

• Just Works: The involved devices immediately
start the pairing process upon request.

• Out of Band (OOB): For this model, both devices
need to implement a different wireless communica-
tion technology such as Near Field Communication
(NFC). However, this method is the least common
due to the hardware requirements.

LE Legacy Pairing does not provide Numeric Com-
parison, while still providing Passkey Entry, JustWorks
and OOB. However, the implementation of JustWorks
and Passkey Entry in LE Legacy Pairing is less secure
than in LE Secure Connections and SSP.

The choice of association model depends on the input
and output capabilities of the device, as shown in table 1.

3 Reasons for Bluetooth Vulnerabilities

Security in Bluetooth networks depends on the secu-
rity of the Bluetooth medium, protocols and parameters.
Weaknesses in each of these aspects result in vulnerabil-
ities in a Bluetooth network.

Bluetooth makes several assumptions about security.
For one, it assumes that once a connection is established
between two devices, it will remain permanently secure
with the keys it has stored. Secondly, there is an as-
sumption that short range provides some level of security

Table 1: Table indicating the choice of association model
given the input and output capabilities of the Bluetooth
devices as described in [5]
.

Device A Device B Assoc. Model
DisplayYesNo DisplayYesNo Num. Comparison

DisplayKeyb Num. Comparison
KeybOnly Passkey Entry

NoInpNoOut JustWorks
DisplayKeyb DisplayOnly Num. Comparison

KeybOnly Passkey Entry
NoInpNoOut JustWorks

KeybOnly KeybOnly Passkey Entry
NoInpNoOut JustWorks

NoInpNoOut NoInpNoOut JustWorks

since adversaries need to be in close proximity (typically
5-30m). Moreover Bluetooth authenticates devices, not
users, so there is an assumption that all users on a partic-
ular device should follow the same security protocol.

In this section, we look at Bluetooth’s vulnerability
to eavesdropping and weaknesses in the mechanisms of
Bluetooth’s security model.

3.1 Vulnerability to Eavesdropping
Due to the nature of wireless RF communication, eaves-
droppers are often not detected in a Bluetooth network.
Unencrypted transmissions obviously make it easy for an
eavesdropper to see the contents of any packets. How-
ever the eavesdropper has to be in range of the Bluetooth
network.

Bluetooth packets consist of an access code, packet
header and a payload. Since the access code and packet
header are always sent unencrypted, even when encryp-
tion is used on the data and payload, an eavesdropper can
always see general piconet information pertaining to the
devices. Using this information, the eavesdropper could
figure out the authorization levels of the legitimate pi-
conet devices.

Furthermore, as explained in our attack below 6, low
energy legacy pairing provides no passive eavesdropping
protection. If successful, eavesdroppers can capture se-
cret keys distributed during low energy pairing.

3.2 Potential Weaknesses
3.2.1 Encryption Mechanisms

The most significant weakness in the Bluetooth encryp-
tion mechanism is when 128-bit encryption cannot be
used. When two devices communicate the parameters for
encryption, the length of the encryption key is restricted

3

by the Bluetooth device that has the shorter maximum
encryption key length. Another weakness occurs when
the PIN inputted in the Passkey Entry or JustWorks asso-
ciation model is used to generate the link keys. This PIN
can be brute-forced and used for replication of the link
keys by a passive eavesdropping attacker. An exploita-
tion of this weakness is demonstrated in Section 6.1.

3.2.2 Association Models of SSP

One particular weakness of the association models of
SSP that we look at is the Just Works model. This pairing
method provides no MITM protection between trusted
devices, as explored in Section 5.

3.2.3 Device Configuration

The default settings of Bluetooth provide little security,
as the device is set as discoverable and non-secure, mean-
ing that an attacker can discover the BD ADDR of it and
perform various attacks.

4 Overview of Bluetooth Attacks

4.1 Known Attacks
• Da-Zhi Sun et al. [6] showed that the passkey entry

association model in Secure Simple Protocol (SSP)
of Bluetooth in the newest version 5.0 is vulnerable
under Man-In-The-Middle attacks. These are possi-
ble when the host reusing the passkey or generates
it by a non-random algorithm.

• Cope et al. [7] aimed to capture connection re-
quest packets and to view the encrypted packet con-
nection from master to slave. They found limited
success in some devices such as a Fit Bit, where
they eavesdropped on packets in its connection to
an iPhone.

• Das et al. [8] proposed two new device authenti-
cation and data transmission protocols based on the
current security issues and limitations of Bluetooth.

• Ryan [9] intercepted and reassembled packets using
an eavesdropping technique, in addition to an mak-
ing attack against the key exchange protocol that
rendered encryption useless to passive eavesdrop-
pers.

4.2 Challenges
Previous work shows that Bluetooth sniffing is very hard.
Unlike Wi-Fi, Bluetooth employs frequency hopping be-
tween 79 channels approximately 1600 times per sec-
ond. Furthermore, before transmission, both the header

and the payload for each packet are scrambled with data
whitening in order to randomize the data. This is more
of an inconvenience to sniffing as opposed to a security
mechanism. Finally, to sniff any packet over a wire-
less Bluetooth network, the receiver needs to operate
in promiscuous mode, receiving all packets it can read
without any regard of who it was intended for. Gen-
eral purpose Bluetooth firmware and hardware general
do not support this mode, so more specialized hardware
is needed. Moreover this hardware is often rare and ex-
pensive. One particular solution we utilize is Ubertooth
[10], as explored in Section 6.

4.3 Our Attacks
Our goal in this project was to do a comparative analysis
of previous attacks and extend them to arbitrary Blue-
tooth devices. In general terms, the two main types of at-
tacks we explore are Active Eavesdropping or a Man-In-
The-Middle (MITM) attck, and Passive Eavesdropping
or Sniffing attacks.

5 Active Eavesdropping Attack

One immediate piece of information to notice is that
the JustWorks mechanism does not provide any protec-
tion from MITM attacks. The most obvious devices em-
ploying JustWorks that come to mind are headphones,
which become a great target to attempt, since people
use them for private communication. To identify a start-
ing point for the attack, we analyze what happens when
a user tries to connect to a headphones/headset device.
Although Bluetooth (BT) Headphones class and Blue-
tooth headset class have drastically different specifica-
tions, they are used interchangeable in this paper, since
they perform the same purpose.

For the scope of the project, we perform a very high
level attack. The approach we used is to use a lower level
only if it is absolutely necessary. As we will see bellow,
this approach has brought valuable results with less re-
quired effort, allowing us to try more things, yet left us
with some limitations and gaps. The results, however,
are enough to show substantial flaws at the higher level
Bluetooth design.

5.1 Device used
For this attack, we start with Bluetooth 4.2 Headphones,
bought on Amazon1, as our slave device. As claimed
on the product page, the headphones support Bluetooth
4.2 and easy pairing with tablets. Upon connection to

1https://www.amazon.com/Headphones-TaoTronics-TT-BH07-
Waterproof-Cancelling/dp/B06ZYX6Y1T/

4

a laptop, the headphones add two entries to the list of
available sound playback devices: the first one is listed
as TaoTronics TT-BH07 Hands-Free with a Head-
set type, and the other one is listed as TaoTronics

TT-BH07 Headphones with a Headphones type. Later,
we see how these two types reflect the broadcasted ser-
vices.

The master device used was a Samsung Galaxy S7

Edge(Galaxy) smartphone. As claimed on the manufac-
turer’s website [11], the device supports BLE 4.2.

For the MITM device, we use Raspberry Pi 3

Model B (RPi). We’ve chosen this device for the fol-
lowing advantages: it supports Bluetooth LE 4.2 technol-
ogy; it uses Debian-based OS, which allows us to have a
more fine-grained control of Bluetooth than it would be
on a Windows or Mac device, yet still providing a high
level control; it’s mobility can be useful in demonstrat-
ing the concept of attacks in public places, since it is not
restricted to any location and therefore, can bypass the
assumption that it’s hard for an attacker to be close to the
victim.

5.2 Pairing mechanism
5.2.1 User perspective

The first time the user has to connect to the headphones,
he/she has to hold a button on the headphones, until the
LED starts to indicate that the headphones are ready to
pair. Then, he/she has to go to the Bluetooth settings and
add a new device. On the Galaxy the device appears as
TaoTronics TT-BH07 with an icon of a multimedia de-
vice. If the headphones weren’t put in the pairing mode,
the device would not be displayed. After connecting to
the headphones, the user can allow the headphones to
be used as a media playback device and/or a call audio
device. So, from the user prespective, the only ways to
identify the headphones are the name, the icon, and the
functions broadcasted, although the last once is not obvi-
ous.

5.2.2 Technical perspective

On the lower level of the process, the smartphone sends
inquiry requests [12] to a number of different frequen-
cies, then scanning from a reply on some of these fre-
quencies. If a potential device is found, the device broad-
casts some information like the name, MAC, class and
broadcasted profiles. Since this is a higher level attack,
the actual process of pairing is irrelevant, but it will be
discussed later in the paper. We discuss the role of each
one:

• Name. The name of the device is what the phone
displays to the user. It does not have any other pur-

pose besides helping the user to identify the device.

• Class. Class[13] is what dictates the icon of the
device, or more generally, what kind of device
it is. Using RPi, we were able to extract the
class ID - 0x240404, which corresponds to Head-
phones/Headset device.

• MAC address. It is the most important identifier,
which is used by the software to keep track of other
devices. As seen in UNIX systems, the pairing link
keys are stored in the location associated with the
device’s MAC address [14]. In our first experiment,
we’ll see that Galaxy also uses it to identify devices
in the list of discovered devices.

5.3 Setting up the spoofing device

5.3.1 Experiment 1: Mimicking visual identity

We can now setup the RPi to broadcast the same meta-
data as the headphones. To get control over Bluetooth
on RPi, we use BlueZ - a common Bluetooth stack for
Linux. We can use hciconfig to change the name and
the class of device. We managed to change the MAC ad-
dress of the bluetooth module by using bdaddr[15] util-
ity. However, we will not do it for the first experiment. In
addition to that, we need to make our RPi to appear as a
NoInputNoDisplay device to enable JustWorks , which
we can do using bluetoothctl utility.

$ hciconfig hci0 name "TaoTronics TT-BH07"

$ hciconfig hci0 class 0x240404

$ hciconfig hci0 piscan

$ bluetoothctl

agent NoInputNoOutput

default-agent

Now, using the Galaxy, we can lookup available
devices. Indeed, now we see a media device name
”TaoTronics TT-BH07”. However, if the phone has al-
ready been paired with the headphones, this will appear
as a separate entry. When trying to connect to the device,
we see two obstacles. On the RPi, a prompt requiring a
confirmation pops up, which is an example of the limita-
tion we couldn’t by pass within the scope of the project
and deemed it irrelevant. However, the phone doesn’t
actually connect to the RPi, but only pairs, since there is
no profiles being broadcasted. Yet, we’ve shown that it’s
possible to connect to RPi without MITM protection and
visually tricking the user into connecting to the spoofing
device.

5

5.3.2 Experiment 2: Mimicking services

The next step towards making the RPi to appear the same
as the headphones is opening the same communication
channels by broadcasting the same profiles. Profiles are
defined by services that support the profile, where each
service has an associated socket. So, we want to extract
a list of broadcasted services from the headphones.

Extracting services We want to imitate the services,
while being able to eavesdrop the incoming traffic, so
we can save it, and so we can transmit it to the actual
headphones. To do so, we used PyBluez, which is a
Python library allowing access to Bluetooth resources on
the RPi. It has methods to discover devices in the range
and discover the services broadcasted.

With the headphones, however, PyBluez was not re-
turning any services when asked to provide all ser-
vices2. Instead, we could use bluetoothctl to lookup
all broadcasted profile UUIDs. We can do so by pair-
ing to the headphones and using # info MAC ADDRESS ,
which displays a list of long UUIDs, where 4-digits rep-
resent a profile.

For each displayed profile, we use PyBluez to display
the necessary services. In the end, we end up with 5
different services. In the end, we end up with 5 unique
services, with the following profiles:

• Serial Port (Port 1)

• Hands-Free (Port 2)

• Headset (Port 3)

• AV Remote (Port 24) [Volume Control]

• Advanced Audio (Port 25) [Audio Sink]

Now, we can recreate the services using PyBluez (code
in the referenced repository). We make a script that
broadcasts the services in such a way that, as soon as
a master device connects to the port, the script connects
to the same port on the actual headphones. We do so, by
running all the sockets in non-blocking parallel threads,
seamlessly resending any received data to the opposite
device.

When we run the script, we put both headphones and
the phone in the pairing mode. We make the phone con-
nect to the RPi, and RPi in turn connects to the head-
phones.

2Later, when trying to extend this attack to a BT mouse, we real-
ized a flaw in this approach that might explain the shortcomings in the
expected results. Specifically, PyBluez supports BD/EDR implemen-
tation and has only experimental support for BLE and, more impor-
tantly, GATT. Therefore, not all the services might have been visible
by PyBluez

Our script shows us that the phone connected to only
two of the open ports. Yet, we can see BT commands
being exchanged in a non-encrypted form. This shows
that our setup works as a MITM spoofing device.

listening on port 25

listening on port 23

listening on port 3

listening on port 2

listening on port 1

2 Accepted connection from (’8C:1A:BF:5B:A5:8D’,

2)

25 Accepted connection from (’8C:1A:BF:5B:A5:8D’,

25)

25 Received from master b’\x00\x01’

25 Received from slave b’\x02\x01\x14\x08\x10

\x08\x04\x08’

2 Received from slave b’AT+BRSF=191\r’

2 Received from master b’\r\nOK\r\n’

...

The only shortcoming, however, that we weren’t able
to intercept the sounds. Even though there is a socket
corresponding for an audio sink, the audio is not being
sent through it. Most likely, the sound itself is being sent
via SCO socket, yet the setup wasn’t straightforward and
was deemed irrelevant, since the fact that we intercept
the BT commands is enough to show the capability of
MITM, and there is no reason to assume the same can’t
be done for the sound.

5.3.3 Experiment 3: Mimicking MAC address

Now, we can perform a more sophisticated attack. We
install an additional bluetooth adapter to an old one (hci1
and hci0, respectively). By using the bdaddr utility, we
set the address of hci0 to the address of headphones, and
the address of hci1 to the address of the phone. We also
adjust the script by initating the listening sockets from
hci0 and the outgoing ones from hci1.

When we run the experiment what we see is, if the
headphones are within the phone and are in the pairing
mode, the phone is likely to connect to either one. This is
not the problem for the outgoing socket, since our spoof-
ing socket does not accept more connections, so it will
only hear back from the actual headphones. So, with
probability around 50%, we are able to be a man in the
middle.

5.4 Forcing the user repair

The attack requires the headphones to be in a pairing
mode and the smartphone to be attempting to connect
to the headphones.

6

Even though people do occasionally repair the head-
phones, we can force them to do so, using the fact that
the phone won’t connect to a device if link keys don’t
match. Therefore, if we are able to put our spoofing de-
vice next to the phone prior the phone trying to connect to
the already paired headphones, there is a chance that the
connection will be rejected and the user will be tricked
into initiating repairing with the headphones, making it a
very practical attack.

6 Passive Eavesdropping Attack

A passive eavesdropping attack is the process by which
a third party listens to the data being exchanged by two
devices. As mentioned in the Bluetooth specifications
[2], BLE devices with version 4.0 and 4.1 are vulnera-
ble to this kind of attack. Even though BLE devices en-
crypt data by using AES-CCM cryptography, the key ex-
change protocols are still exploitable. This is not the case
for BLE version 4.2 and beyond due to the introduction
of ECDH (Elliptic Curve Diffie Hellman) key exchange,
which is proved to be secure under this type of attack [1].

6.1 How the attack works

Before two BLE devices can initialize an encrypted ses-
sion, they need to share a secret LTK (Long Term Key).
Usually, this LTK is created only once and generated
when the devices connect for the first time. This key
exchange protocol starts with the devices sharing a TK
(Temporary Key), which is a 128-bit value used as a
key for AES encryption. Depending on the association
model, TK will take different values [9]:

• JustWorks: The value of TK is just 128 0’s.

• Passkey Entry: The value of TK is a 6-digit PIN,
given by the users of the devices. Then, this value
from 0 to 999,999 is padded with 0’s to get the 128-
bit key.

• OOB: a 128-bit value exchanged out of bounds.

Then, the two devices start the pairing process by shar-
ing the following messages [16]:

• Pairing Request command (PREQ) and Pairing Re-
sponse command (PRES)

• Initiating device address type (IAT) and Initiating
device address (IA)

• Responding device address type (RAT) and Re-
sponding device address (RA)

After sending and receiving these unencrypted mes-
sages, the master and slave device generate MRAND and
SRAND respectively. These two numbers are pseudoran-
dom and not shared initially.

Then the master computes:

MCONFIRM = c1(TK,MRAND,PP)

where c is a function uses the public parameters PP =
{PREQ,PRES, IAT, IA,RAT,RA} and AES-128 encryp-
tion with TK as the key. Similarly, the slave computes
SCONFIRM using SRAND [2].

After computing these values, they send MCONFIRM
and SCONFIRM followed by MRAND and SRAND.
Then, the master and the slave recompute SCONFIRM
and MCONFIRM locally and check that it matches the
value that were sent to them. This step is done to confirm
that both the master and the slave have the same TK [16].

Once the master and slave confirm that they have TK,
they compute the short term key

STK = s1(TK,SRAND,MRAND)

where s1 uses MRAND and SRAND and AES-128 en-
cryption with TK as the key [16].

Finally, this STK is used for exchanging the LTK,
which will be used for future communication and encryp-
tion [9]. This process is synthesized in Figure 2.

Figure 2: Overview of the STK and LTK generation.
This figure was extracted from [16]

.

7

This pairing protocol called LE Legacy pairing proves
to be vulnerable for the association models JustWorks
and Passkey Entry. If a passive eavesdropper listens to
all the messages in this pairing protocol, the attacker can
simply brute-force the 1,000,000 possible values of TK
until it gets a key that correctly computes MCONFIRM
and SCONFIRM to get SKT. Then, the attacker can use
the obtained STK value to compute the LTK [9].

6.2 Countermeasures
Note that the attacks relies on the fact that there are not
that many possible values for TK, which ranges from 0 to
999,999. Thus, this protocol is secure in the OOB asso-
ciation model, where TK takes a random 128-bit value.
However, OOB is not commonly implemented since it
requires special hardware [9] .

In order to prevent this attack on association models
such that JustWorks and Passkey Entry, BLE 4.2 intro-
duced a ECDH key exchange protocol called LE Secure
Connections. This protocol is similar to the SSP used
by Bluetooth devices since 4.1 and it is secure against
passive eavesdropping attacks [1].

6.3 Setting up the attack
We decided to replicate this attack on a BLE 4.1 Log-
itech MX Master mouse that it is still very popular in the
market.

In order to listen the messages exchanged in the pair-
ing process, we utilized Ubertooth [10], a open source
software, hardware and firmware to sniff and analyse
Bluetooth and BLE packets.

In order to get the long term key exchange between the
BLE devices, we used Crackle [17], an open source soft-
ware which can take the packets derived from Ubertooth
and obtain the keys generated in the connection process.

After decrypting the packets with Crackle, we could
visualized the entire LE Legacy Pairing protocol using
Wireshark.

7 Evaluation

7.1 Active Eavesdropping Attack
When improving the MITM attack described above, not
being able to intercept the sound can be addressed by
using a lower level control, which would be beyond the
scope of the project. We’ve shown that discrete Man In
the Middle attacks on headphones using JustWorks are
plausible with unsophisticated hardware. Given the na-
ture of uses of headsets and headphones, such as personal
use and communication, the design should be deemed in-
secure.

7.2 Passive Eavesdropping Attack

We were able to extract the LTK and STK in a BLE con-
nection created with the BLE 4.1 Logitech MX Master
mouse. The demo of this attack can be found in this link.

Once we were able to sniff all the necessary messages
to proceed with our attack, we obtained TK, STK and
LTK almost instantly. Since there are not that many pos-
sible values for TK, Crackle is able to obtain this value
in around a second [9].

However, this attack was not easy to deploy. We
needed several attempts in order to get all the necessary
messages since the Ubertooth sniffer is not able to cap-
ture all BLE packets at all times. In addition, this attack
is not very practical, since the only vulnerability comes
in the process of generating the LTK. Once this key is
computed, the communication is secure under passive
eavesdropping attacks.

Despite these technical difficulties, we still recom-
mend to switch, if possible, to Bleutooth devices that use
SSP or BLE devices with version 4.2 and beyond. If the
right conditions are given, a passive eavesdropper could
analyze all the messages offline and get the exact con-
tent sent by a particular BLE deviced, as shown by our
experiment. This is not possible under SSP or LE Se-
cure Connections, which are proven to be secure under
passive eavesdropping attacks.

8 Suggestions for Future Work

We can expand the Active eavesdropping attack by ap-
plying to more devices using JustWorks , such as key-
boards and BT mouse. Given the input nature of the de-
vices, intercepting information from either of those can
reveal a lot of information - from navigation on the com-
puter to typing using on screen keyboard to intercepting
keystrokes and password.

On the other hand, it’s relatively easy to address these
issues. In the case of headphones, a set of beep patterns
can be used to verify the authenticity of the connection,
given a display (to display a pattern) or an input (to ’tap’
the pattern). Similarly, in the case of BT mouse, we can
use click patterns, and BT keyboards should enforce typ-
ing PIN codes.

The next steps for the passive eavesdropping attack
is to use the cracked LTK to decrypt the mouse pack-
ets and analyzing the data that it sends. In addition, we
can expand this attack to other sensitive devices that uti-
lize BLE such as keyboards and medical devices. We can
use this data to simulate attacks that reveals sensitive in-
formation such as passwords inputted by clicking, bank
account information type by users in a keyboard and im-
portant health related data outputted by medical devices.

8

https://www.dropbox.com/s/0mtj6dbphexrcy9/6857_demo_final.mov?dl=0

In addition, we could combine both our active eaves-
dropping and passive eavesdropping to inject and modify
packets maliciously to interfere normal communication
between the devices.

Moreover, we could do more extensive research about
the theoretical and practical vulnerabilities introduced in
the most recent Bluetooth version 5.0.

9 Conclusion

Due to the widespread use of Bluetooth, the system must
enforce security principles such as authentication, confi-
dentiality, authorization and integrity. Passwords, phone
calls and sensitive financial or medical data can be trans-
mitted through Bluetooth devices, and users are often not
aware of the risk that this imposes. As we demonstrate
in this report, several arbitrary Bluetooth devices are still
susceptible to both active and passive eavesdropping at-
tacks. Bluetooth devices with the JustWorks association
model are vulnerable under MITM attacks. Older BLE
devices with version 4.0 and 4.1 are vulnerable to passive
eavesdropping attacks. Despite the existence of newer
versions of Bluetooth, there are still billions of devices
with older versions still in use that pose a significant se-
curity vulnerability.

Code

All code relevant to our experiments and this project can be found in
the following repository:
https://github.mit.edu/samsonov/6857FinalProj.

References
[1] Bluetooth Core Specification v5.0, Bluetooth Special Interest

Group (SIG), Dec. 2016.

[2] Bluetooth Core Specification v4.1, Bluetooth Special Interest
Group (SIG), Dec. 2013.

[3] S. (n.d.)., Bluetooth low energy (BLE) enabled devices market
volume worldwide, from 2013 to 2020 (in million units), 2015.
[Online]. Available: https://www.statista.com/statistics/750569/
worldwide-bluetooth-low-energy-device-market-volume/

[4] J. Padgette, J. Bahr, M. Batra, M. Holtmann, R. Smithbey,
L. Chen, and K. Scarfone, Guide to Bluetooth Security: Recom-
mendations of the National Institute of Standards and Technology
(Special Publication 800-121 Revision 2). USA: CreateSpace
Independent Publishing Platform, 2017.

[5] K. Haataja, K. Hyppönen, S. Pasanen, and P. Toivanen,
Bluetooth Security Attacks: Comparative Analysis, Attacks,
and Countermeasures, ser. SpringerBriefs in Computer Science.
Springer Berlin Heidelberg, 2013. [Online]. Available: https:
//books.google.com/books?id=bFm6BAAAQBAJ

[6] D.-Z. Sun, Y. Mu, and W. Susilo, “Man-in-the-middle attacks
on secure simple pairing in bluetooth standard v5.0 and
its countermeasure,” Personal Ubiquitous Comput., vol. 22,
no. 1, pp. 55–67, Feb. 2018. [Online]. Available: https:
//doi.org/10.1007/s00779-017-1081-6

[7] P. Cope, J. Campbell, and T. Hayajneh, “An investigation of blue-
tooth security vulnerabilities,” in 2017 IEEE 7th Annual Comput-
ing and Communication Workshop and Conference (CCWC), Jan
2017, pp. 1–7.

[8] M. L. Das and R. Mukkamala, “Revisiting bluetooth security
(short paper),” in Information Systems Security, R. Sekar and
A. K. Pujari, Eds. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2008, pp. 132–139.

[9] M. Ryan, “Bluetooth: With low energy comes low security,”
in Proceedings of the 7th USENIX Conference on Offensive
Technologies, ser. WOOT’13. Berkeley, CA, USA: USENIX
Association, 2013, pp. 4–4. [Online]. Available: http://dl.acm.
org/citation.cfm?id=2534748.2534754

[10] “Software, firmware and hardware designs for ubertooth.” [On-
line]. Available: https://github.com/greatscottgadgets/ubertooth/

[11] Samsung Galaxy S7 Edge specifications, Samsung. [Online].
Available: http://www.samsung.com/global/galaxy/galaxy-s7/#!
/spec

[12] M. Duflot, M. Kwiatkowska, G. Norman, and D. Parker,
A Formal Analysis of Bluetooth Device Discovery. [Online].
Available: http://qav.comlab.ox.ac.uk/papers/sttt-bluetooth.pdf

[13] Assigned numbers for Baseband identifies the Inquiry Access
codes and Class of Device/Service (CoD) fields., Bluetooth.
[Online]. Available: https://www.bluetooth.com/specifications/
assigned-numbers/baseband

[14] “bluetoothd(8) - linux man page.” [Online]. Available: https:
//linux.die.net/man/8/bluetoothd

[15] “Change your bluetooth device mac-address.” [On-
line]. Available: http://blog.petrilopia.net/hacking/
change-your-bluetooth-device-mac-address/

[16] K. Ren, “Bluetooth pairing part 3 low energy legacy pairing
passkey entry,” Bluetooth. [Online]. Available: https://blog.
bluetooth.com/bluetooth-pairing-passkey-entry

[17] “Crack and decrypt ble encryption.” [Online]. Available:
https://github.com/mikeryan/crackle

[18] U. Rijah, S.Mosharani, S.Amuthapriya, M. Mufthas, M. Hezre-
tov, and D. Dhammearatchi, “Bluetooth security analysis and so-
lution,” in International Journal of Scientific and Research Pub-
lications, ser. WOOT’13, vol. 6. IJSRP, 2016.

9

https://github.mit.edu/samsonov/6857FinalProj
https://www.statista.com/statistics/750569/worldwide-bluetooth-low-energy-device-market-volume/
https://www.statista.com/statistics/750569/worldwide-bluetooth-low-energy-device-market-volume/
https://books.google.com/books?id=bFm6BAAAQBAJ
https://books.google.com/books?id=bFm6BAAAQBAJ
https://doi.org/10.1007/s00779-017-1081-6
https://doi.org/10.1007/s00779-017-1081-6
http://dl.acm.org/citation.cfm?id=2534748.2534754
http://dl.acm.org/citation.cfm?id=2534748.2534754
https://github.com/greatscottgadgets/ubertooth/
http://www.samsung.com/global/galaxy/galaxy-s7/#!/spec
http://www.samsung.com/global/galaxy/galaxy-s7/#!/spec
http://qav.comlab.ox.ac.uk/papers/sttt-bluetooth.pdf
https://www.bluetooth.com/specifications/assigned-numbers/baseband
https://www.bluetooth.com/specifications/assigned-numbers/baseband
https://linux.die.net/man/8/bluetoothd
https://linux.die.net/man/8/bluetoothd
http://blog.petrilopia.net/hacking/change-your-bluetooth-device-mac-address/
http://blog.petrilopia.net/hacking/change-your-bluetooth-device-mac-address/
https://blog.bluetooth.com/bluetooth-pairing-passkey-entry
https://blog.bluetooth.com/bluetooth-pairing-passkey-entry
https://github.com/mikeryan/crackle

	Introduction
	Overview of Bluetooth Security
	Security Goals
	Security Mechanisms
	Bluetooth Device Address
	Pairing
	Association Model

	Reasons for Bluetooth Vulnerabilities
	Vulnerability to Eavesdropping
	Potential Weaknesses
	Encryption Mechanisms
	Association Models of SSP
	Device Configuration

	Overview of Bluetooth Attacks
	Known Attacks
	Challenges
	Our Attacks

	Active Eavesdropping Attack
	Device used
	Pairing mechanism
	User perspective
	Technical perspective

	Setting up the spoofing device
	Experiment 1: Mimicking visual identity
	Experiment 2: Mimicking services
	Experiment 3: Mimicking MAC address

	Forcing the user repair

	Passive Eavesdropping Attack
	How the attack works
	Countermeasures
	Setting up the attack

	Evaluation
	Active Eavesdropping Attack
	Passive Eavesdropping Attack

	Suggestions for Future Work
	Conclusion

