
MIT Timely Secure Confessions

Rayden Chia Anthony Liu Faraaz Nadeem Arman Talkar
{rayden,igliu,faraaz,atalkar}@mit.edu

Abstract

The ”MIT Timely Confessions” page on Facebook is a
popular online community for MIT students. The page
promises a ”completely anonymous” confessions sys-
tem. However, the privacy of this system is completely
dependent on Google Forms, the service used to collect
confessions. So, while the administrators of the con-
fessions page may not receive any user information, a
user must trust the Google system to not abuse meta-
data for de-anonymization. Additionally, despite being
called MIT Confessions, the page provides no mecha-
nism to verify that a user submitting a confession is in-
deed part of the MIT community, lowering the quality
and authenticity of the page content. In this paper we
use MIT OpenId Connect, and Ring Signatures to pro-
pose two systems that allow for anonymous and authen-
tic confessions.

1 Introduction

In addition to a strong physical sense of community, MIT
students interact online on publicly accessible websites
like Facebook.com and Reddit.com. The most popu-
lar of these online communities, with 3,140 followers
and daily updates [1], is the ”MIT Timely Confessions”
(MTC) Facebook page. MTC provides two services: 1.
a form for submitting confessions anonymously and 2. a
public page where accepted and moderated confessions
are posted daily. This page has drawn so much attention
not only because the confessions are entertaining and re-
latable to MIT students, but also because the Facebook
platform allows students to comment on and discuss the
confessions.

We have identified 4 goals of a confessions system that
make it useful to MIT students.

1. Anonymous: Many of the confessions are of a per-
sonal nature and students would not feel comfort-

able posting them if they knew they could be re-
vealed as the confessor.

2. Authenticity: In order for the confessions to be re-
latable, they should actually come from the MIT
community. Otherwise ”bait” confessions and con-
fessions of low quality appear in greater proportion
to honest ones.

3. Convenient: Submitting a confession should not be
hard. Ideally, a student should just have to type the
confession in and click submit.

4. Moderated: Not all confessions are appropriate for
posting. Some confessions may include names (in
a bad light), may not actually be a confession, or be
inappropriate in a general ”you know it when you
see it” sense.

While all the goals are important, we believe
anonymity is the foundation of the system. Without it,
users would be reticent to submit the confessions that
make the page popular, and the lack of content would
render the page useless. MTC uses Google Forms to col-
lect submissions. This system is anonymous in the sense
that the page administrators do not learn the confessors’
identity. However, Google, with Google Account cook-
ies, certainly has the ability to de-anonymize confessors.
If this information from Google were to be leaked, the
integrity of the system collapses.

We also place strong emphasis on authenticity. Much
of the excited conversation around a confession relies
upon it being true. While we cannot guarantee this in
an anonymous model, we can at least hope that the con-
fessor is an MIT student and will say something relevant
to the MIT community. MTC has no provision for this.
The submission form is open to the public, so anyone can
confess.

In this paper, we use MIT OpenId Connect and Ring
Signatures to develop two confessions systems that pri-

1



oritize anonymity and authenticity, while attempting to
maintain convenience and moderation.

The remainder of the paper is organized as follows:
Section 2 describes the technologies and cryptographic
primitives used in our system. Section 3 describes an
initial, simple ”single blind privacy” system. Section 4
describes a more complex ”double blind privacy” system
that trades efficiency for greater plausible deniability. We
start with a strawman system and build up to our final
design. Section 5 describes our Proof of Concept im-
plementation of the system and Section 6 evaluates the
security of the two systems.

1.1 Threat Model
We operate under a compromised-server-information
model. Our primary fear is that the information ex-
changed by the user and the system is made public. This
fear stems from the recent and highly publicized data
breach attacks [2]. So, we assume that this information is
always public, and enforce that the system should never
be able to associate a user with a confession. We focus
on the cryptography necessary to build this system, and
assume that connections between the user and the sys-
tem are secure. In our proof-of-concept implementation
we enforce this by explicitly using TLS. We also do not
trust our uses. We assume they may leak secrets given to
them, intentionally or unintentionally.

2 Background Information

2.1 OpenId Connect
OpenID Connect 1.0 (OIDC) is a secure inter-operable
authentication protocol [3] based on the OAuth 2.0
framework. OAuth 2.0 is specified by the IETF in RFCs
6749 and 6750 (published in 2012) and was designed to
support the development of authentication and authoriza-
tion protocols.

OIDC provides a variety of standardized message
flows based on JSON and HTTP and enables developers
to authenticate their users across websites and apps with-
out having to own and manage password files. It provides
a secure verifiable, answer to the question: What is the
identity of the person currently using the browser or na-
tive app that is connected to me? The platform allows for
clients of all types, including browser-based JavaScript
and native mobile apps, to launch sign-in flows and re-
ceive verifiable assertions about the identity of signed-in
users.

At the time of writing, MIT has implemented an
OpenID Connect pilot service which allows enabled sites
and applications to log the user in using MIT account
credentials. The pilot service provides both an OAuth

2.0 authorization server and an OpenID Connect identity
provider (OIDC IDP) for use in a wide variety of sites
and applications. MIT account holders can log in to the
service using their username/password, Kerberos tickets,
or MIT certificate. The pilot service is available to ev-
eryone at MIT.

2.2 Ring Signatures
Ring signatures, initially proposed by Rivest, Shamir and
Tauman [5], are a method of signing a message such that
it is verifiable that the signer belongs to some predeter-
mined set of users, but it impossible to identify the signer
from the set of users. Ring signatures are not to be con-
fused with group signatures, which uses a central author-
ity or fixed group. Instead, a signer can extemporane-
ously choose a set of users and include them in a ring
signatures (even without their permission). Ring signa-
tures have a number of applications, such as leaking se-
crets in a semi-anonymous way. For instance, consider
a member of the White House who wishes to leak some
secret information to the press. That staff member of
the White House wants to be sure that no one can iden-
tify him/her as the signer. However, he/she also wants
to convince people that the information is provided by
some staff member of the White House. This is achiev-
able with the staff member signing on the message using
a ring signature, where the ring includes all staff mem-
bers of the White House. This proves that only a member
of the White House could have signed, but the signer is
not personally identifiable.

The security of ring signatures is defined as such: a
signature σ on a message m is associated with a set of
public keys P = {pk1, . . . , pkn}. Unforgeability is cod-
ified by claiming that no adversary without knowledge
of any secret key in S = {sk1, . . . ,skn} can output (m,σ)
where σ is a valid ring signature with respect to pki ∈ P
(∀i). The adversary is given access to a signing oracle
and succeeds if it outputs a valid ring signature on any
message not queried to its oracle. Regarding anonymity,
the requirement is that for any signature σ generated with
a secret key ski, the probability that the signing algorithm
with ski outputs σ equals the probability that the sign-
ing algorithm with sk j outputs σ , for all i 6= j. In other
words:

Pr[Dski(m) = σ ] = Pr[Dsk j(m) = σ ] ∀i 6= j

which gives perfect anonymity by definition.
In this system, we will be implementing a linkable ring

signature scheme that satisfies signer-indistinguishability
(anonymity), linkability (that two signatures by the same
signer can be linked) and spontaneity (there is no group
secret, and hence no key setup for secret-sharing) as de-
scribed in [4].

2



Figure 1: Single Blind Setup System

Figure 2: Single Blind Submission System

3



3 Single Blind System

This system uses four principals: the user (U), the au-
thentication server (A), the confessions server (C), and
the OpenId Connect server (OIDC). To avoid tedious
implementation details, we will abstract the OIDC func-
tionality described in Section 2.1 into an oracle entity.
When queried about U , OIDC will respond with whether
or not U is a member of the MIT community.

Figure 1 and Figure 2 detail the system timeline. U ,
wishing to submit a confession for the first time, queries
A for access. A uses the OIDC oracle to authenticate U
as as valid MIT community member. U then generates
a public/private key pair (upri,upub). U sends upub to A,
which adds (U : upub) to a public table of public keys.

When U wishes to send a confession, U chooses a se-
curity parameter p. This is the number of public keys
they will use in the ring signature. The computation of
the ring signature is done by the user, so a higher p re-
sults in greater security but more computation. U ac-
cesses the public table of keys on A to choose p−1 pub-
lic keys at random. U uses these keys to sign confession
m with a ring signature, generating S(m). U then sends
(S(m),m, p) to C. C verifies the ring signature and ac-
cepts m.

This system achieves our goals. A user can only be
added to the list of possible confessors after authenticat-
ing, and thus can only submit a valid confession if they
have access to an MIT individual’s private key. The sys-
tem uses ring signatures, so the identity of the confes-
sor is not obvious, and privacy is maintained. However,
we consider this system to be only ”single-blinded.” The
amount of privacy depends on the security parameter p.
A user without much computation power may choose
a relatively low p. An observer, who sees the signed
confession and has background information about the
confession could inspect the list of public keys used in
the signature (the possible confessors) and use the back-
ground information to de-anonymize the confessor. So,
while this system is extremely simple, because it is re-
stricted to the relatively small MIT community and has
users compute the signature, it offers limited privacy.

4 Double Blind System

We will now build up to our Double Blind system that
trades efficiency for greater confessor plausible deniabil-
ity. We use the same principals as in the Single Blind
system.

4.1 Strawman solution: one key system
We call our initial approach a ”one key system.” C has a
public/private key pair (cpriv,cpub). A also has this same

key pair. U , wishing to submit a confession for the first
time queries A for access. A uses the OIDC oracle to
authenticate U as a valid MIT community member. A
then gives U cpriv. When U wishes to submit a confes-
sion m, U signs m with cpriv, creating Scpriv(m) and sends
(m,Scpriv(m)) to C. C then verifies Scpriv(m) and, if valid,
accepts m as a confession to post. U can submit further
confessions with the same key - there is not need to in-
teract with A again.

Without any malicious actors, this achieves our two
main objectives. Firstly, assuming enough users authen-
ticate with A before any confessions are submitted (this
can be arranged by having a ”registration period” before
the service is active) the system cannot associate any sin-
gle confession with a particular U . All registered users
have the same signing key, so they are all plausible con-
fessors. Additionally, because we use the OIDC oracle, A
is only giving the signing key to MIT community mem-
bers.

However, this scheme breaks with untrusted users.
Users may intentionally or unintentionally leak this key.
While a singular leak does not compromise anonymity,
it does break the authenticity of the system. Now anyone
with access to the leak can submit valid confessions to
C and there is no detection mechanism. The main take-
away from this system is the concept of the authentica-
tion server giving the user a secret for signing, as op-
posed to only the user generating a secret.

4.2 Two key system

The ”two key system” provides a primitive form of de-
tection. Now, there are two public/private key pairs,
(c1priv,c1pub) and (c0priv,c0pub). U authenticates as be-
fore, but is not immediately given a secret key by A.
First, U generates a random nonce n. In their request for
the secret, U submits this nonce. If the nonce ends with
a 1, the server gives U (c1priv,c1pub), and otherwise re-
veals (c0priv,c0pub). U submits a confession m to C as
before.

Now the server has means for detection. Since users
generate random nonces, the ratio of users with each key
should be around 1 : 1. Similarly, the ratio of confes-
sions signed by a particular key should be 1 : 1. If one
of the keys is leaked, an arbitrary number of people can
use that key to sign messages. This would skew the ratio
and allow detection. For example, if c0priv is leaked, the
ratio of confessions signed with c0priv to those signed
with c1 priv will be greater than 1. The system can set
a threshold of deviation from the expected signing ratio
it is willing to tolerate and, upon detecting an intoler-
able anomaly, invalidate the offending key. On invali-
dation, A and C generate a new key pair to replace the
invalidated pair. Users attempting to submit confessions

4



with this key will be redirected to A, forcing them to re-
authenticate and receive a new secret key.

There are two problems with this scheme. Firstly, a
single MIT user could authenticate twice and intention-
ally use nonces with different parity each time. A user
able to leak both keys at the same time poses a threat
to the detection system, which relies on only one key be-
ing accessible to anyone. This problem is easily solvable.
Now, A maintains a table that matches a registered user to
the last valid secret they received. With this, a user can-
not register twice. Additionally, the server now knows
how many users are issued each secret. This gives the
system a more accurate idea of the ratio of confessions
they can expect to be signed by each key, and allows the
server to dynamically set the tolerance threshold.

The second problem is collusion. Two users can reg-
ister with nonces of different parity, thus receiving both
secrets. They can then collude to release the keys at the
same time, compromising detection.

We also note that in the case of invalidation, around
half of the users need to re-authenticate and get a new
secret. While this can be implemented practically as a
background process, this is a significant amount of ”col-
lateral damage” - one user may have leaked the key, but
50% of the users now need to do additional work to use
the system.

4.3 The N key system

We solve the issue of collusion by making collusion
harder. Instead of just two key pairs we have N key
pairs. We will now refer to each of these key pairs as
”bucket pairs,” because users given the same secret are
considered to be in the same ”bucket.” We also introduce
a public function F that maps the user-generated nonces
to some bucket key. There are many ways F could be
implemented. The only requirement is that it uniformly
maps all possible nonce values to the bucket keys. A
uses F to determine which key it should give U . Now,
the threshold to completely break the detection system is
N users colluding. Additionally, with P users, the num-
ber of users who need to re-authenticate is dropped from
50% to around P/N.

While this system solves issues with detection, it
creates new privacy issues. In a compromised-server-
information model, if the table mapping users to secrets
is leaked, an observer can see which users fall into each
bucket. The observer, with a confession and accompany-
ing signature, would know which bucket of users signed
the confession. Using metadata and background infor-
mation about the confession and the people in the bucket,
the observer could de-anonymize the confessor. Small
buckets decrease the privacy of the system.

4.4 Final Design

Our final design uses ring signatures and a public ledger.
As described in section 2.2, ring signatures allow a sig-
nature verifier to assert that the signer was part of some
group without revealing which member of the group
it was. Our definition of a public ledger is loose, as
many different technologies could implement the requi-
site functionality. We require a publicly readable and ap-
pendable ledger with a notion of time. We also require
that the ledger central authority be able to remove addi-
tions to the server. A centralized blockchain is a heavy-
weight but feasible example of this functionality.

The timelines of the three distinct interaction chains
are presented in Figure 3, Figure 4 and Figure 5. As in
the N key solution, U authenticates and receives a se-
cret Cnpriv as before. However, instead of signing a con-
fession with this message, U generates a personal key
pair (upriv,upub). U signs upub with Cnpriv, generating
SCnpriv(upub). U adds (upub,SCnpriv(upub)) to the public
ledger.

Instead of detecting secret leaks with confessions as
before, secret leaks are based on the number of keys
added to the public ledger signed with a particular Cnpriv.
Once again, the authorization server uses the table of
users to secrets to determine the ideal ratio of signed ad-
ditions. When a leak is detected the authentication server
uses its authority to remove the invalid keys from the
ledger.

When U wishes to submit a confession, they pick a
parameter p. This is the number of public keys they will
use in the ring signature. The computation of the ring
signature is done by the user, so a higher p results in
greater security but more computation. U uses the pub-
lic key associated with each secret as well as A’s public
key to verify additions to the ledger and pick p−1 valid
public keys for inclusion in the ring signature. U signs
m, generating R(m) and sends (R(m),m, p) to the C. C
verifies that the public keys used in R(m) are valid and
that the signature is valid, and then accepts m.

In this system, there are two levels of anonymity.
Given a confession with security parameter p, the ob-
server knows the p public keys that could have submit-
ted the confession. For each public key, assuming the
confessor is diligent about choosing public keys signed
by different bucket keys, there are P/N registered users
who could have added that entry to the ledger. This ”dou-
ble blinding” makes it harder for an observer to correlate
a confession and its associated background information
with a small set of individuals who could have written it.

5



Figure 3: Double Blind Key Distribution System

Figure 4: Double Blind Ledger Add System

Figure 5: Double Blind Submission System

6



4.5 Anomaly Detection Algorithm
Here we present a simple algorithm for anomaly detec-
tion and subsequent key invalidation. A starts with a
dictionary of priors P mapping bucket secret Cn to un,
the number of users given that secret. This can be con-
structed using A’s table mapping users to the secret they
were issued. We also define a ”threshold multiplier” m
that signifies the tolerance for anomalies. This algorithm
is run after an ”observation window.” During the obser-
vation window additions to the public ledger are recorded
into D. This data is fed to the algorithm, which reports
whether any bucket keys should be invalidated.

1. Normalize P by transforming it into a mapping of
secret Cn to un /Σ∀nun.

2. Parse the data in D to create Po, mapping secret Cn
to an, the number of public keys appended to the
ledger and signed by Cn during the observation win-
dow.

3. Normalize Po by transforming it into a mapping of
secret Cn to an /Σ∀nan.

4. Iterate over all Cn. If (an /Σ∀nan)>m∗(un /Σ∀nun)
mark Cn as invalid.

5. Iterate over the public ledger and invalided all pub-
lic keys signed with Cn.

5 Implementation

The GitHub repository for our code is located at:
https://github.com/turbomaze/secure-whistle. This
contains client-side code necessary to submit confes-
sions, as well as instructions for doing so. You can
also visit confess.anthony.ai to view the system end-
points, such as the sample confessions and the public
ledger. Appendix A contains screenshots of our proof-
of-concept.

A list of endpoints on the server, along with their de-
scriptions, are as follows. These descriptions are avail-
able on the home page, along with links to recent confes-
sions.

• GET /bucket/id: start the authentication process
for getting a private key id

• GET /private: after a successful authentication,
send the private bucket key

• GET /public/id: send the user public key id

• GET /ledger: return all the valid public keys in
the ledger

• POST /ledger/add: add a public key / signature
pair to the ledger

• POST /confess: confess a message, signed with a
ring signature

The server implementation is written in Python us-
ing Flask. Some major dependencies include the ecdsa
Python library, since we implemented ring signatures us-
ing elliptic curves. We used the ECC Linkable Ring Sig-
natures library.

We expected ring signature and public key computa-
tion to be the limiting factor in terms of performance of
our implementation. Running 2.4 ghz on one core, for
a ring of size 45, signing a message took 12.47 seconds.
This is a long amount of time, but we expect this to be
an upper bound on our system, which is designed to han-
dle thousands of users. Additionally, the computation
can be done in the background, so once the user types
and submits their confession, they can multitask while
the signature is calculated.

6 Security Evaluation

Confidentiality. The confidentiality of data-in-transit
when sent from the end-user to our servers is protected
end-to-end with Transport Layer Security (TLS/SSL) at
Layer 4-5 of the OSI model. Our servers are configured
to only use algorithms approved under the Federal Infor-
mation Processing Standard 140-2 (FIPS 140-2), which
ensures perfect forward secrecy and strong end-to-end
encryption.

Integrity. Since the signer computes the ring sig-
nature, it follows from section 2.2 that as long as the
ring signature was computed correctly (without any ma-
licious interference on the signer’s device), the message
integrity can be verified using the ring signature and re-
jected if the verification fails. Modification of the signa-
ture is not possible since the signature is computed on the
hash of the message, so there is no malleability. In addi-
tion, the TLS layer adds another layer of integrity during
data transit.

Authentication and Authorization. We transfer the
risks associated with authentication by making use of
MIT OIDC. Our servers will not store any passwords or
credentials that may be used to authenticate with other
MIT services. In addition, HTTPS certificate public key
pinning (HPKP) is implemented on our server to ensure
the identity of the MIT OIDC Identity Provider endpoint.

Anonymity. In the final design, we make use of the
’double-blinding’ method to make it harder for an ob-
server to correlate a confession (and its associated meta-
data) to a small set of individuals who could have sub-
mitted it. Assume that adversaries know the p public

7



keys used in signing the confession. For each public key,
assuming that signer/confessor is careful about choosing
public keys signed by different bucket keys (i.e. using
our client), there are P/N registered users (where P is
the number of users, and N is the number of keys in the
bucket) who could have added that entry to the public
ledger. In addition, ring signatures further mix the keys
used to prevent revocation of anonymity.

6.1 Goals
These are the general confessions system goals stated in
Section 1 and our evaluation of how our systems address
them:

1. Anonymity: Both systems provide for anonymity.
In the event of a compromise, an observer could
specify a group of potential confessors for a given
confession. However, with a large enough security
parameter p there is enough plausible deniability for
one single user in this group to not feel threatened
by this compromise.

2. Authenticity: Use of OpenId Connect ensures that
only MIT community members can receive secrets
and anomaly detection allows us to find and stop
breaches of authenticity.

3. Convenient: MTC only requires users to click on
a form, enter the confession, and click submit.
Our system requires considerably more interaction.
However, aside from the initial setup of download-
ing a client-side package and generating a keypair,
all other processes - getting the bucket key, finding
keys on the public ledger, computing the ring sig-
nature - can be run in the background. Packaged
correctly, the user’s interface during the submission
process can be just as straightforward as MTC’s.

4. Moderated: We have not addressed moderation as it
is a human issue - there should be someone present
to view the valid confessions and filter or edit in-
appropriate ones. This would be trivial to imple-
ment on a production system. In the interim, we
can submit our validated confessions to MTC and
use them for moderation. In this setup our system
would function as a mix net - a single source of
confessions with no way to trace a confession to its
original confessor.

References
[1] ADMINISTRATORS. MIT Timely Confessions Facebook Page.

https://www.facebook.com/timelybeaverconfessions/,
2018.

[2] ARMERDING, T. Biggest Data Breaches of the 21st Century. IOG
Communications (2018).

[3] DANIEL FETT, RALF KUSTERS, G. S. The web sso standard
openid connect: In-depth formal security analysis and security
guidelines. https://arxiv.org/pdf/1704.08539.pdf, 2017.

[4] JOSEPH LIU, VICTOR WEI, D. W. Linkable spontaneous anony-
mous group signature for ad hoc groups. https://eprint.

iacr.org/2004/027.pdf, 2004.

[5] RONALD RIVEST, ADI SHAMIR, Y. T. How to leak
a secret. https://people.csail.mit.edu/rivest/pubs/

RST01.pdf, 2001.

7 Appendix A

(See next page)

8



Figure 6: confess.anthony.ai landing page and existing confessions

Figure 7: Proof-of-concept client secret retrieval and confession submission

9


