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1 Introduction

We were interested in exploring the beautiful theory of topology hiding com-
putation. For our project we implemented the topology hiding computation
algorithm that was developed by Adi Akavia, Rio LaVigne and Tal Moran [1].
We consider honest-but-curious adversaries.

2 Related Work

There has been plenty of work in the topology hiding computation area. The
first result was a feasibility result by Moran, Orlov, and Richelson [7]. This
result only works in graphs whose diameter is logarithmic in the number of
participants. Another interesting result in this area is by Akavia and Moran
[2]. This result works in graphs that are cycles, trees or that have logarithmic
circumference in the number of participants. Another notable result is the paper
by Hirt, Maurer, Tschudi and Zikas [6] which improves upon the efficiency of
[7].

In our project, we chose to implement the algorithm from [1] as it’s the only
one that works in arbitrary graphs.

3 Algorithm

The specific problem we are working on is the following:

Problem 1 Given a network with n nodes, compute the OR of all their values,
while hiding the nodes’ values and the topology of the network.

3.1 High-level Overview

We give a high-level overview of the algorithm we plan to implement, as de-
scribed in [1].
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The first thing we need to address is how to hide the nodes’ values. We
will use homomorphic encryption, and more specifically El-Gamal. El-Gamal
allows us to hide the nodes’ values and it’s relatively easy to augment with some
convenient functions. For example, we can construct a Homomorphic OR based
on El Gamal.

Now that all the values are encrypted, we need to find a way to OR them.
To this end, the nodes will send their messages to perform random walks across
the graph. A random walk is a path that consists of random steps.

More specifically, each node v will initially send its encrypted message to a
random neighbor. Once a message is received, v will homomorphically OR it
with each own message, and then send it to a random neighbor. The messages
will perform random walks for a large enough number of rounds, until we know
with overwhelming probability that they have visited each node in the network.
The random walks are composed of 8κn3 steps, where κ is defined by the user.
The larger the κ, the higher the probability that the random walks cover the
whole network.

There is a problem with this approach. Given two ciphertexts, encrypted
with different public keys, we can’t homomorphically OR them. Akavia et al.
have a really cool solution to this problem. They define two functions AddLayer,
and DelLayer.

AddLayer can take an encryption of a message m with public key pk1, and
a secret key sk2, which pairs with public key pk2 and generate approximately
an encryption of m with public key pk1 · pk2. DelLayer reverses the AddLayer
operation. This way, since all public keys are known, each node can generate
an encryption of its own message and an encryption of the received message,
both encryptions with the same public key and then homomorphically OR them.

Now, once the messages have completed their random walks, they can simply
backtrack their progress, with the nodes removing any encryption layers they
added, until the messages return to their origins. Once at the origin, the node
can simply decrypt the received message and get the OR of all the nodes’ values.

3.2 Primitives

The encryption behind this algorithm is standard El-Gamal, with some addi-
tional features, like adding an encryption layer, deleting an encryption layer, a
randomization function, and Homomorphic OR.

3.2.1 El-Gamal

Fix the group G and its generator g.
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KeyGen()→ (pk, sk) = (gx, x)

Enc(pk = gx,m)→ (gy,m · gxy)

Dec(sk = x, c = (c1, c2))→ c2/c
x
1

3.2.2 Adding and Deleting Layers

We define adding and deleting layers as follows:

AddLayer(c = (c1, c2), sk)→ (c1, c2 · csk1 )

DelLayer((c = (c1, c2), sk)→ (c1, c2/c
sk
1 )

3.2.3 Randomization Function

The following randomization function is used, for some random coins r:

Rand((c = (c1, c2), pk, r)→ (c1 · gr, c2 · pkr)

3.2.4 Homomorphic OR

In order to implement a homomorphic OR, we need two more functions. One
to let us homomorphically multiply, and one to let us homomorphically expo-
nentiate.

We can homomorphically multiply two ciphertexts like this:

hMult(c = (c1, c2), c′ = (c′1, c
′
2))→ (c1 · c′1, c2 · c′2)

We can use hMult to homomorphically raise any ciphertext to a power by
repeatedly squaring. Thus, we can achieve hPower homomorphic exponentia-
tion.

Now, it remains to show how to homomorphically OR. Note that when
ORing two numbers, we have to ensure that no information on the numbers
leaks given the homomorphic OR. In order to achieve this, we denote that an
encryption of 0 is an encryption of the identity and an encryption of 1 is an
encryption of some other element.

We assume some random coins r, r′.

Algorithm 1 HomOR(c, c′, pk, r, r′)

1: z = hPower(c, r, pk)
2: z′ = hPower(c′, r′, pk)
3: Return Rand(hMult(z, z′), pk)
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3.3 Algorithm

The algorithm has three phases.

Phase 1: Preprocessing Phase In this phase, we do any preprocessing re-
quired.

Let T denote the number of steps each random walk will be. T = κ · 8n3,
for some κ.

In addition, the nodes generate all the key pairs needed, and all the random
permutations needed. The nodes will use the random permutations to
decide which neighbor they should send every message they receive to.

The nodes also encrypt their values, with their own public key.

Phase 2: Aggregate Phase This phase lasts T rounds. On each round, each
node will send its messages, (ciphertext, public key) pairs, to their neigh-
bors using a random permutation to decide which message goes to which
neighbor.

Once a node receives a ciphertext c, and public key pk pair, it applies
AddLayer on the message and then homomorphically ORs the generated
encryption with an encryption of its own value, generating a new cipher-
text c′ and new public key pk′. Then, using the previously calculated
permutations, it chooses a neighbor at random to send (c′, pk′) to.

Phase 3: Decrypt Phase This phase also lasts T rounds. On each round,
each node passes their messages back to the node that that message came
from during phase 2.

Once a node receives a message, the node uses DelLayer to remove its en-
cryption layer, and then figures out which node it should pass the message
back to, depending on what happened during phase 2.

On the last round of this phase, the messages have returned back to the
node who first requested the OR. That node can now simply decrypt the
message using its secret key and find out the OR of all the nodes’ values.

3.4 Complexity of the Algorithm

This algorithm has a round complexity of O(κ ·n3), for some user defined κ. On
every round of the algorithm, each node sends a message to all its neighbors.
Thus, on every round a maximum of n2 messages is sent over the network. This
algorithm has a communication complexity of O(κ · n5).

4 Implementation Details

4.1 Library

Our source code is available under the MIT license at
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n Running Time (s)
2 0.64
3 7.6
4 30
5 105
6 278
7 614

Figure 1: Runtimes with κ = 4 under the simulator

https://github.com/jmgrosen/topohiding.

We chose Python for our implementation language for its simplicity and
ease of use. For a real-world implementation, a lower-level and thus faster
language would be more appropriate, but for this project, we valued clarity
over performance.

We began by implementing the low-level cryptographic primitives: key gen-
eration, group operation on pubic keys, encryption, decryption, re-randomization,
adding layers, deleting layers, and homomorphic OR. We ran some tests with
random elements to ensure these primitives were working. For debugging pur-
poses, we also implemented mock cryptographic primitives that simply log op-
erations (for example, encrypting “0” then adding a layer might look like “Add-
Layer(Enc(0, k1), k2)”).

On top of the primitives, we implemented the actual topology-hiding mix-
ing. It is a straightforward translation of the above algorithm description into
Python. The library is implemented from the point of view of one node, so that
it can be used in actual settings, not just simulation.

4.2 Simulation

The first user of the library is a “simulator” which simply runs the algorithm
with multiple nodes in the same process. It is given a description of a graph
(implemented using the networkx Python library), which it uses to emulate
network links. It runs each round sequentially, passing the results from each
node to its neighbors at each new round.

To roughly evaluate the real-world performance of the protocol, we timed
how long it takes to simulate a complete graph of n nodes for n = 2 to 7.
The results of the experiment (performed on a laptop) are shown in 1. Clearly,
the scaling makes this impractical for nontrivial networks. Improving the per-
formance of the code would bring down the constant factor, but the O(n5)
inevitably keeps the runtime nasty.

4.3 Demo Application

In addition to the simulation, we also developed a proof of concept command
line application that can run the topology hiding protocol between multiple
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networked computers. Each user provides a list of nodes they wish to connect to
in IP:Port form, the value to be or’ed, an upper bound on the number of nodes,
and a value for κ, which determines the error rate. These parameters all have to
be determined via some side channel in the current version of the application.
The parameters g and q are public and hard-coded into the application.

The communication between nodes is socket based, and due to the require-
ments for topology hiding there can be no master node to coordinate communi-
cation. To simplify the communication protocol each node opens a server socket
to receive connections from its neighbors and opens a client socket with each
neighbor. This makes the communication protocol between nodes symmetric.
However, due to the this setup there is a need to map received connections on
the server socket with opened client sockets.

Once the application is launched there is a discovery phase to allow this
matching. Each node generates a unique ID on start and sends this ID as it
opens client sockets with the user entered list of neighbors. Upon receiving a
connection on its server socket each node reads the received ID and replies with
its own ID. Matching these IDs allows each node to create a persistent mapping
between connections to its server socket and opened client sockets.

Once a persistent mapping between socket connections is achieved our Python
library is used to run the algorithm. Our library already provides the messages
produced by each round in a serialized format so there is little overhead in
transmitting messages between nodes. The first round for each node requires
no message inputs from other nodes. After the first round, each node sends
the output messages from a round to each neighbor via its client sockets and
receives messages from other nodes via its server socket. The received messages
are required for the next round. Synchronization between nodes is ensured by
the fact that no node can compute a round without messages from all of its
neighbors.

Once the algorithm is completed the result is printed to the terminal for
viewing by the user.

5 Potential Applications

The proposed topology hiding computation system from [1] that we implemented
only supports the operation of single bit ”or”. By coordinating multiple rounds
we can extend this to an ”or” of an arbitrary number of bits. Additionally, by
having the users invert the input we can achieve the ”and” operation.

Applications that might utilize the primitive of single bit ”or” as imple-
mented in our demo application include unanimous approval / veto votingor
determining possible exposure to some disease through a social graph. Secure
anonymous veto methods have been previously proposed but the membership
of the group is known [5]. A topology hiding system such as the one we im-
plemented would allow group members to additional members while keeping
the presence and identity of the new members secret and protecting the con-
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fidentiality of the newly added member’s vote. An additional application that
we find promising is confidentially determining possible exposure to communi-
cable diseases. There exist many communicable diseases which carry a social
stigma but for which determining exposure to is important from a public health
prospective, such as tuberculosis. By representing possible interactions as edges
on a graph an extended social circle can determine if its members are at risk
without anyone exposing sensitive health information or their social interactions.

Our implementation of the topology hiding computation system does not
currently support ”or” over multiple bits. However, due to the randomized na-
ture of the cryptography it is possible to run the protocol multiple times in
parallel over the same random walk without impacting the privacy guarantees
or the probability of the success. This increases the communication complexity
by a factor of O(B), where B is the number of bits. The round complexity
remains the same.

A potential application we have realized that maps well to this primitive is
the bloom filter. A bloom filter is a computationally efficient method of checking
if an item possibly belongs to a set using a hash function [4]. In a bloom filter
items are hashed and then bitwise OR’ed into a persistent bit array. Checking
if an item is in the bloom filter consists of hashing it and comparing all the bits
of the hash with the value of the bloom filter. Items possibly in the set will
have all 1 bits in their hash match with 1 bits in the bit array while an item not
in the set will have at least one 1 bit in their hash not match with a 1 bit in
the bit array. Bloom filters map well to applications like content filtering where
there is a need to check if a large volume of content is part of some restricted
list and only rely on ”or” to add items.

With the rise of federated social networks such as Mastodon[3] it may be
useful to have shared content filters for prohibited content. Topology hiding
multiparty computation could allow for multiple instances to add items to a
shared bloom filter representing prohibited content without revealing where the
content originated and hiding which instances peer with other instances.

It is also possible to use the topology hiding computation algorithm as a
generic broadcast method for other multiparty computation methods, as out-
lined by [1]. This allows the property of topology hiding to be extended to
multiparty computation methods beyond or / and. However, given the rela-
tively high computational cost of the topology hiding computation method this
may not be the most feasible for many applications.

6 Conclusion & Future Work

In this project we implemented the topology hiding computation algorithm de-
scribed by [1] to produce a multiparty computation topology hiding system that
provides the primitive of single bit or. We created a python library to allow in-
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tegration of this functionality in to projects and a demonstration command line
application that can allow parties on separate computers with internet connec-
tivity to run the algorithm for applications like acceptance / veto voting.

The biggest challenge in utilizing using topology hiding in applications is
the unfavorable round complexity, which is O(n3). Our test cases took several
seconds to run on our personal computers for relatively small numbers of nodes.

For future work we would work on a GUI for our demo application to improve
usability as well as ways of reducing the algorithm run time. Porting our code
base from Python to a higher performance language could provide a constant
run time reduction. Additionally, finding methods to reveal select properties
of the graph could allow for a new bound on the time complexity at the trade
off for some of the topology hiding guarantees and possibly represents a new
research area in the field of topology hiding computation.
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