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Recitation 3 : Di�erential Privacy
We will review di�erential privacy as covered in the previous lecture. These notes are based

on the excellent book on di�erential privacy by Dwork and Roth [DR14].

On Notions of Privacy

We wish to formalize the notion of privacy we want to achieve. Roughly speaking, we have two
competing goals: we want to release data so that something useful can be learned, about the pop-
ulation as a whole, while each individual has some privacy. We compare some notions of privacy.

De�nition 1 (“Cryptographic Privacy”). An adversary’s prior and posterior views about an individual
(i.e., before and after having access to the database) are the same.

This notion of privacy is inspired by Shannon’s notion of secrecy: the adversary’s prior on the
message encrypted does not change after seeing the encrypted ciphertext. That is,

Pr[M � m | C � c] � Pr[M � m].

This is a very strong notion of privacy. While great for cryptographic purposes, it is not very
useful here because nothing useful can be learned about the population either. This defeats the
purpose of releasing the ‘anonymized’ data for study. To give an example, if an alien’s prior was
that humans have no �ngers. And then, looking at some database, he learned that most humans
have ten �ngers, this changes his belief about humans. This does not satisfy the cryptographic
notion of privacy, but is the kind of information we want the database to reveal.

The Model. Consider some domain X . And we have a population P which is a distribution this
domain X . We have a database ~x ∈ X n comprising of samples from the population P. That is, ~x �

x1 , x2 , . . . , xn where each xi ← P. We want to enable inference about properties of the distribution
P while keeping individual xi’s in the dataset private. Wewill start by de�ning di�erential privacy.
First, we need to de�ne ameasure of closeness between databases. We say that two databases ~x and
~y are neighbors if they di�er at only one location. More generally, let ~x − ~y denote the Hamming
Distance, i.e., the number of locations at which the two databases di�er .

De�nition 2. A randomized algorithm M is (ε)-differentially private if for all S ⊂ Range(M), and for
all neighbors ~x , ~y ∈ X n ,

Pr
[
M(~x) ∈ S

]
≤ eε · Pr

[
M(~y) ∈ S

]
Some remarks about this de�nition are in order.

1. (Why Multiplicative Error.) Additive error is problematic for large enough datasets. So, if the
de�nition was in turn,

Pr
[
M(~x) ∈ S

]
≤ Pr

[
M(~y) ∈ S

]
+ δ

it can be satis�ed by a following mechanism: M picks a random record in the dataset and
outputs it. Then for two neighbors, their output distributions are quite close.
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2. (The value of ε.) In this de�nition, ε is akin to a security parameter. In typical cryptographic
de�nitions, wewant the security parameter to be very small 2−128 or so. Here it is not the case.
We want ε to be larger, (say > 1/n) just for functionality. To give an example, say we want
to estimate: How many X chromosomes do humans have on average? If we start with a dataset
containing a random population, the answer would be 1.5. But if we switch to a population
of all men, it should decrease to 1. We want large changes in the database to actually result
in large changes to the output distribution.

3. (Group Privacy.) Di�erential Privacy does protect groups as well. If two datasets ~x , ~y di�er in
k locations, then Pr

[
M(~x) ∈ S

]
≤ ekε

· Pr
[
M(~y) ∈ S

]
.

4. (Closure under Post-Processing.) Let f be a randomized mapping, then the algorithm, f ◦
M(~x) � f (M(x)) is di�erentially private. That is, if the adversary knew Bob was a smoker
and the adversary had di�erentially private access to a database ~x, the adversary still does
not know if Bob was in the database or not.

5. (An Economic Perspective.) Di�erential Privacy promises individuals that no additional harm
comes to them from being included in the database. They could be harmed by the statistical
inference about the general population. To repeat the smoking causes cancer example, a
smoker could be harmed by this discovery, possibly via increased premiums, but this penalty
is for smoking and not for being a part of the database/study.

6. (What di�erential privacy does not protect.) Di�erential privacy does not provide guarantees
about hiding properties of the underlying distribution P. For example, ‘most humans have
ten �ngers’ is not hidden, but ‘Bob has nine �ngers’ is hidden.

We will review two mechanisms for achieving di�erential privacy.

Laplace Mechanism

This is an intuitive method of achieving privacy: release noisy statistics. So, the algorithm M �rst
computes the statistic, adds a random noise ε to it and returns this answer. The mechanism is
named Laplace after the error distribution which we describe next.

De�nition 3 (Laplace Distribution). The Laplace Distribution centered at 0 with scale b is the distribu-
tion with probability density function:

Lapb (z) �
1
2b
· e−|z |/b

This is a symmetric version of the exponential distribution. We can similarly describe a dis-
crete valued Laplace distribution. We describe the Laplace mechanism next. In this mechanism,
to di�erentially compute a function f , �rst compute f (~x) and then add ε ← Lapb for a chosen
parameter b.

De�nition 4 (Laplace Mechanism). Given any function f : X n
→ R, the Laplace mechanism is

de�ned as:
ML (~x , f (·), b) � f (x) + E

where E ← Lapb .
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We will show that this mechanism is di�erentially private. To that end, we need to the notion
of global sensitivity. For a function f : X n

→ R, the global sensitivity is de�ned as:

∆ f � max
‖~x−~y‖�1

�� f (~x) − f (~y)��.

Theorem 5. The Laplace mechanismML (x , f (·), b) is ε-di�erentially private for ε � ∆ f /b.

Proof. The proof follows from the de�nition of global sensitivity and the Laplace mechanism.
Let ~x , ~y be neighboring datasets and z ∈ R. We compare the probability density functions for
M(~x , f , b) (denoted by p~x) andM(~y , f , b) (denoted by p~y).

p~x (z)
p~y (z)

�
exp(−| f (~x) − z |/b)
exp (−| f (~y) − z |/b)

(by def of Laplace dist)

� exp
(
| f (~y) − z | − | f (~x) − z |

b

)
≤ exp

(
| f (~y) − f (~x) |

b

)
(triangle inequality)

≤ exp
(
∆ f
b

)
(by def of global sensitivity)

�

Randomized Response and Local Models

We will see another method for achieving di�erential privacy called randomized response. The
example is about eliciting truthful responses about embarrassing or illegal behavior. For example
it has been observed that there are discrepancies between voter opinionpolls and election outcomes
in elections in the United States where a white candidate and a non-white candidate run against
each other. This is called the Bradley E�ect.

To ask a query: “Have you engaged in illegal/embarassing activity?”, the respondent is in-
structed to do the following:

1. Roll a dice.
2. If the value rolled is one of 1, 2, 3, 4, answer truthfully.
3. Else, answer the opposite.

This provides plausible deniability when answering.

Theorem 6. This randomized response mechanism is ln 2-di�erentially private.

Proof. The proof manipulates conditional probability. Conditioned on any response yes or no, the
truth is likely to be the same with probability 2/3 and the opposite with probability 1/3. �

This statistic when aggregated is correct by law of large numbers or equivalently the Cherno�
bound.

This algorithm has a very interesting characteristic: that it is a local algorithm. The respondent
when giving this data does not have to trust the party collecting the data to keep it private or only
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allow access via di�erentially private algorithms. This is desirable because the very existence of
an aggregate database of private information raises the possibility that at some future time, it will
come into the hands of an untrusted party, either maliciously (via data theft), or otherwise.

In the local model of computation, every party �rst applies a di�erentially private algorithm to
their input and only shares this information.
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