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Recitation 1

In this recitation, we recall some mathematical background. These concepts will be used later
in cryptographic constructions.

1 Modular Arithmetic

Definition 1.1. For n > 0 and integers a, b we say that a = b (mod n) if n divides a — b. Also denoted
asn |a—Db.

e.g. 7=2 (mod 5).

This relation is an equivalence relation. It is consistent with respect to addition and multipli-
cation. Thatis, ifa = a’ (mod n)and b = b’ (mod n),thena +b =a’+ b’ (mod n) and ab = a’b’
(mod n).

Let Z, = {0,1,...,n — 1} denote the set of equivalence classes and the operations + and -
defined on them.

2  Groups

Definition 2.1 (Group). A set G with an associated operation - : G X G — G is called a group if the
following properties are satisfied:

¢ Closure. Ifa, b € G then the producta - b € G.

* Associativity. Foralla,b,c € G,(a-b)-c=a-(b-c).

e Identity. There is an identity element e such thate -a =a-e = a foralla € G.

e Inverse. For all elements a € G, there existsa™* € Gsuchthata-a ' =a1-a=e.

In this class, most of the groups we will encounter will also be commutative, i.e., a-b = b-aforalla,b € G.

We start with examples:

* (Z,+) Integers under addition. The set {---—2,-1,0,1,2,...}. Zero is the additive inverse.
(IN, +) Natural numbers under addition. No identity.

(Z, - ) Integers under multiplication. No inverse for 2.

(Zﬂ 4 +)

7., under multiplication. No inverse for 0.

Polynomials over integers of degree at most 2 under addition.

{...,-4,-2,0,2,4,6...} under addition.

{-1,1,3,5, ...} under addition. No identity.

Z11 \ {0} under multiplication. Works for any prime.

Others that are groups: (R, +), (C, +), the set of permutations on {0,1,2} under function
composition, vectors of integers: Z>.



2.1 Z, \ {0} is a Group: The Extended Euclid’s algorithm

Need to show that every a € Z,, such that a # 0 has an inverse.

Definition 2.2 (Greatest Common Divisor (GCD)). The ged(a, b) is defined as the largest largest d € Z
such that d|a and d|b but gcd(0,0) = 0.

e.g. gcd(10,8) = 2, ged(3,5) = 1, ged(10,0) = 10.
Definition 2.3 (Relatively prime). Integers a and b are relatively prime if gcd(a, b) = 1.

Euclid’s Algorithm for computing the GCD: For non-negative numbers 2 and b,

a ifb=0,

ged(a, b) = ]
ged(b,a mod b) otherwise.

Example: gecd(7,5) = ged(5,2) = ged(2,1) = ged(1, 0).
Theorem 2.4. For a # 0 mod p, a™! exists and can be computed efficiently.

Proof. We first show that it exists. Then we will describe an algorithm to compute it efficiently.
Consider the set S = {a,2a,3a,...(p —1)a} all modp.

First claim: 0 ¢ S. Because if p|a * b then p|a or p|b. Not possible.

Second claim: All the elements are distinct. If ab = ab’ (mod p) then p|a(b — b’). Hence pla or
pl(b = b’) and both are not possibleas0 <a <pand 0 < (b -1") < p.

So all p — 1 elements in S are disjoint and non-zero. Hence by pigeonhole principle, one of
them is 1. i.e., there exist b such that ab =1 (mod p). O

The Extended Euclid’s algorithm can compute 2~ mod p for any ged(a, p) = 1. In the extended
Euclid’s algorithm, we compute not only the gecd, but also a witness x, y such that ax + by =
ged(a, b).

def Euclid(a, b): def ExtEuclid(a, b): gcd(7,5)
if b == 0: if b == 0: gcd(5,2)
return a # As gcd(a,0) = a = axl + 0x0. gcd(2,1)

return Euclid(b, a % b) return (a, 1, 0) gcd(1,0)
(d, x1, yl) = ExtEuclid(b, a % b) out (1,1,0)
# As d = bxx1 + (a%b)*yl and out (1,0,1)
# a = bx(a//b) + (a%b). out (1,1,-2)
return (d, yl, x1 - (a//b)x*xyl) out (1,-2,3)

Figure 1: Euclid’s Algorithm and Extended Euclid’s Algorithm.

3 Finite Fields

We define the notion of a field.

Definition 3.1 (Field). A tuple (F, +, -) is a field if the following properties are satisfied:



1. (F,+) is a commutative group. That is,

(a) Closure. Ifa,b € Fthena+b e F.

(b) Associativity. Foralla,b,c € F,(a+b)+c=a+ (b +c).

(c) Identity. There is an identity element O € F suchthatO+a =a+0=aforalla € F.
(d) Inverse. For all elements a € F, there exists —a € F such that a + (—a) = —a +a = 0.
(e) Commutativity. a +b=b+aforalla,b €F.

2. (F\ {0}, - ) is a commutative group. The identity element is called 1.
3. Distributivity. Foralla,b,c € F,(a+b)-c=a-c+b-c.

Examples of fields include rational numbers Q, real numbers R. Integers Z are not a field
because they do not have multiplicative inverses for non-zero elements.

Theorem 3.2. (Z,, +, ) for any prime p is a field. Also denoted as IF,.

The proof is left as an exercise. The difficult part of showing that multiplicative inverses exist
is already done.

Theorem 3.3. Every finite field has size p* for prime p and positive integer k. There exists a unique finite
field of size p* for all primes p and positive integers k.

We will not show this. We will however describe the construction of finite fields of size 2¥. Let
f(x)be an irreducible polynomial of degree k over IF,. To give some examples: x2+1 = (x+1)(x+1).
While x2 + x + 1 is irreducible.

Theorem 3.4. Let f(x) be an irreducible polynomial of degree k over Fp. Then IF;[x]/(f) is a field where
IF>[x] is the set of all polynomials over .

Example 3.5. By = {0,1, x, x + 1} with irreducible polynomial x? + x + 1. Addition is to simply add
the polynomials over IF,. And to multiply, first multiply the two polynomials and then compute
the remainder modulo f(x) = x>+ x + 1. e.g,, x(x + 1) = x2 + x = 1 after reducing mod f. And
(x+D)x+1)=x>+2x+1=x2+1=x.

Similarly we can construct Fs used in AES by using the irreducible polynomial f(x) = x® +
x4 1



