Recitation 1

In this recitation, we recall some mathematical background. These concepts will be used later in cryptographic constructions.

1 Modular Arithmetic

Definition 1.1. For n > 0 and integers a, b we say that $a \equiv b \pmod{n}$ if n divides a - b. Also denoted as $n \mid a - b$.

e.g. $7 \equiv 2 \pmod{5}$.

This relation is an equivalence relation. It is consistent with respect to addition and multiplication. That is, if $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$, then $a + b \equiv a' + b' \pmod{n}$ and $ab \equiv a'b' \pmod{n}$.

Let $\mathbb{Z}_n = \{0, 1, ..., n - 1\}$ denote the set of equivalence classes and the operations + and \cdot defined on them.

2 Groups

Definition 2.1 (Group). A set G with an associated operation $\cdot : G \times G \rightarrow G$ is called a group if the following properties are satisfied:

- Closure. If $a, b \in G$ then the product $a \cdot b \in G$.
- Associativity. For all $a, b, c \in G$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- Identity. There is an identity element e such that $e \cdot a = a \cdot e = a$ for all $a \in G$.
- Inverse. For all elements $a \in G$, there exists $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$.

In this class, most of the groups we will encounter will also be commutative, i.e., $a \cdot b = b \cdot a$ for all $a, b \in G$.

We start with examples:

- $(\mathbb{Z}, +)$ Integers under addition. The set { $\cdots 2, -1, 0, 1, 2, \dots$ }. Zero is the additive inverse.
- $(\mathbb{N}, +)$ *Natural numbers under addition.* No identity.
- (\mathbb{Z}, \cdot) Integers under multiplication. No inverse for 2.
- $(\mathbb{Z}_n, +)$
- \mathbb{Z}_n under multiplication. No inverse for 0.
- *Polynomials over integers of degree at most 2 under addition.*
- {..., -4, -2, 0, 2, 4, 6...} under addition.
- {-1, 1, 3, 5, ... } *under addition*. No identity.
- $\mathbb{Z}_{11} \setminus \{0\}$ *under multiplication.* Works for any prime.
- Others that are groups: (ℝ, +), (ℂ, +), the set of permutations on {0, 1, 2} under function composition, vectors of integers: Z².

2.1 $\mathbb{Z}_p \setminus \{0\}$ is a Group: The Extended Euclid's algorithm

Need to show that every $a \in \mathbb{Z}_p$, such that $a \neq 0$ has an inverse.

Definition 2.2 (Greatest Common Divisor (GCD)). *The* gcd(a, b) *is defined as the largest largest* $d \in \mathbb{Z}$ *such that* d|a *and* d|b *but* gcd(0, 0) = 0.

e.g. gcd(10, 8) = 2, gcd(3, 5) = 1, gcd(10, 0) = 10.

Definition 2.3 (Relatively prime). *Integers a and b are relatively prime if* gcd(a, b) = 1.

Euclid's Algorithm for computing the GCD: For non-negative numbers *a* and *b*,

$$gcd(a, b) = \begin{cases} a & \text{if } b = 0, \\ gcd(b, a \mod b) & \text{otherwise.} \end{cases}$$

Example: gcd(7,5) = gcd(5,2) = gcd(2,1) = gcd(1,0).

Theorem 2.4. For $a \neq 0 \mod p$, a^{-1} exists and can be computed efficiently.

Proof. We first show that it exists. Then we will describe an algorithm to compute it efficiently. Consider the set $S = \{a, 2a, 3a, ..., (p-1)a\}$ all mod p.

First claim: $0 \notin S$. Because if p | a * b then p | a or p | b. Not possible.

Second claim: All the elements are distinct. If $ab \equiv ab' \pmod{p}$ then p|a(b - b'). Hence p|a or p|(b - b') and both are not possible as 0 < a < p and 0 < (b - b') < p.

So all p - 1 elements in *S* are disjoint and non-zero. Hence by pigeonhole principle, one of them is 1. i.e., there exist *b* such that $ab \equiv 1 \pmod{p}$.

The Extended Euclid's algorithm can compute $a^{-1} \mod p$ for any gcd(a, p) = 1. In the extended Euclid's algorithm, we compute not only the gcd, but also a witness x, y such that ax + by = gcd(a, b).

<pre>def Euclid(a, b):</pre>	<pre>def ExtEuclid(a, b):</pre>	gcd(7,5)
if b == 0:	if b == 0:	gcd(5,2)
return a	# As gcd(a,0) = a = a*1 + 0*0.	gcd(2,1)
return Euclid(b, a % b)	return (a, 1, 0)	gcd(1,0)
	(d, x1, y1) = ExtEuclid(b, a % b)	out (1,1,0)
	# As d = b*x1 + (a%b)*y1 and	out (1,0,1)
	# a = b*(a//b) + (a%b).	out (1,1,-2)
	return (d, y1, x1 - (a//b)*y1)	out (1,-2,3)

Figure 1: Euclid's Algorithm and Extended Euclid's Algorithm.

3 Finite Fields

We define the notion of a field.

Definition 3.1 (Field). A tuple $(F, +, \cdot)$ is a field if the following properties are satisfied:

- 1. (F, +) is a commutative group. That is,
 - (a) Closure. If $a, b \in F$ then $a + b \in F$.
 - (b) Associativity. For all $a, b, c \in F$, (a + b) + c = a + (b + c).
 - (c) Identity. There is an identity element $0 \in F$ such that 0 + a = a + 0 = a for all $a \in F$.
 - (d) Inverse. For all elements $a \in F$, there exists $-a \in F$ such that a + (-a) = -a + a = 0.
 - (e) Commutativity. a + b = b + a for all $a, b \in F$.
- 2. $(F \setminus \{0\}, \cdot)$ is a commutative group. The identity element is called 1.
- 3. Distributivity. For all $a, b, c \in F$, $(a + b) \cdot c = a \cdot c + b \cdot c$.

Examples of fields include rational numbers \mathbb{Q} , real numbers \mathbb{R} . Integers \mathbb{Z} are not a field because they do not have multiplicative inverses for non-zero elements.

Theorem 3.2. $(\mathbb{Z}_p, +, \cdot)$ for any prime *p* is a field. Also denoted as \mathbb{F}_p .

The proof is left as an exercise. The difficult part of showing that multiplicative inverses exist is already done.

Theorem 3.3. Every finite field has size p^k for prime p and positive integer k. There exists a unique finite field of size p^k for all primes p and positive integers k.

We will not show this. We will however describe the construction of finite fields of size 2^k . Let f(x) be an irreducible polynomial of degree k over \mathbb{F}_2 . To give some examples: $x^2 + 1 = (x+1)(x+1)$. While $x^2 + x + 1$ is irreducible.

Theorem 3.4. Let f(x) be an irreducible polynomial of degree k over \mathbb{F}_2 . Then $\mathbb{F}_2[x]/(f)$ is a field where $\mathbb{F}_2[x]$ is the set of all polynomials over \mathbb{F}_2 .

Example 3.5. $\mathbb{F}_{2^2} = \{0, 1, x, x + 1\}$ with irreducible polynomial $x^2 + x + 1$. Addition is to simply add the polynomials over \mathbb{F}_2 . And to multiply, first multiply the two polynomials and then compute the remainder modulo $f(x) = x^2 + x + 1$. e.g., $x(x + 1) = x^2 + x = 1$ after reducing mod f. And $(x + 1)(x + 1) = x^2 + 2x + 1 = x^2 + 1 = x$.

Similarly we can construct \mathbb{F}_{2^8} used in AES by using the irreducible polynomial $f(x) = x^8 + x^4 + x^3 + x + 1$.