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Recitation 1

In this recitation, we recall some mathematical background. These concepts will be used later
in cryptographic constructions.

1 Modular Arithmetic

Definition 1.1. For n > 0 and integers a , b we say that a ≡ b (mod n) if n divides a − b. Also denoted
as n | a − b.

e.g. 7 ≡ 2 (mod 5).
This relation is an equivalence relation. It is consistent with respect to addition and multipli-

cation. That is, if a ≡ a′ (mod n) and b ≡ b′ (mod n), then a + b ≡ a′ + b′ (mod n) and ab ≡ a′b′

(mod n).
Let Zn � {0, 1, . . . , n − 1} denote the set of equivalence classes and the operations + and ·

defined on them.

2 Groups

Definition 2.1 (Group). A set G with an associated operation · : G × G → G is called a group if the
following properties are satisfied:

• Closure. If a , b ∈ G then the product a · b ∈ G.
• Associativity. For all a , b , c ∈ G, (a · b) · c � a · (b · c).
• Identity. There is an identity element e such that e · a � a · e � a for all a ∈ G.
• Inverse. For all elements a ∈ G, there exists a−1 ∈ G such that a · a−1 � a−1 · a � e.

In this class, most of the groups we will encounter will also be commutative, i.e., a · b � b · a for all a , b ∈ G.

We start with examples:
• (Z,+) Integers under addition. The set {· · · − 2,−1, 0, 1, 2, . . . }. Zero is the additive inverse.
• (N,+) Natural numbers under addition. No identity.
• (Z, · ) Integers under multiplication. No inverse for 2.
• (Zn ,+)
• Zn under multiplication. No inverse for 0.
• Polynomials over integers of degree at most 2 under addition.
• {. . . ,−4,−2, 0, 2, 4, 6 . . . } under addition.
• {−1, 1, 3, 5, . . . } under addition. No identity.
• Z11 \ {0} under multiplication. Works for any prime.
• Others that are groups: (R ,+), (C,+), the set of permutations on {0, 1, 2} under function

composition, vectors of integers: Z2.
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2.1 Zp \ {0} is a Group: The Extended Euclid’s algorithm

Need to show that every a ∈ Zp , such that a , 0 has an inverse.

Definition 2.2 (Greatest Common Divisor (GCD)). The gcd(a , b) is defined as the largest largest d ∈ Z
such that d |a and d |b but gcd(0, 0) � 0.

e.g. gcd(10, 8) � 2, gcd(3, 5) � 1, gcd(10, 0) � 10.

Definition 2.3 (Relatively prime). Integers a and b are relatively prime if gcd(a , b) � 1.

Euclid’s Algorithm for computing the GCD: For non-negative numbers a and b,

gcd(a , b) �
{

a if b � 0,
gcd(b , a mod b) otherwise.

Example: gcd(7, 5) � gcd(5, 2) � gcd(2, 1) � gcd(1, 0).

Theorem 2.4. For a . 0 mod p, a−1 exists and can be computed efficiently.

Proof. We first show that it exists. Then we will describe an algorithm to compute it efficiently.
Consider the set S � {a , 2a , 3a , . . . (p − 1)a} all modp.

First claim: 0 < S. Because if p |a ∗ b then p |a or p |b. Not possible.
Second claim: All the elements are distinct. If ab ≡ ab′ (mod p) then p |a(b − b′). Hence p |a or

p |(b − b′) and both are not possible as 0 < a < p and 0 < (b − b′) < p.
So all p − 1 elements in S are disjoint and non-zero. Hence by pigeonhole principle, one of

them is 1. i.e., there exist b such that ab ≡ 1 (mod p). □

The Extended Euclid’s algorithm can compute a−1 mod p for any gcd(a , p) � 1. In the extended
Euclid’s algorithm, we compute not only the gcd, but also a witness x , y such that ax + b y �

gcd(a , b).

def Euclid(a, b):

if b == 0:

return a

return Euclid(b, a % b)

def ExtEuclid(a, b):

if b == 0:

# As gcd(a,0) = a = a*1 + 0*0.

return (a, 1, 0)

(d, x1, y1) = ExtEuclid(b, a % b)

# As d = b*x1 + (a%b)*y1 and

# a = b*(a//b) + (a%b).

return (d, y1, x1 - (a//b)*y1)

gcd(7,5)

gcd(5,2)

gcd(2,1)

gcd(1,0)

out (1,1,0)

out (1,0,1)

out (1,1,-2)

out (1,-2,3)

Figure 1: Euclid’s Algorithm and Extended Euclid’s Algorithm.

3 Finite Fields

We define the notion of a field.

Definition 3.1 (Field). A tuple (F,+, ·) is a field if the following properties are satisfied:
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1. (F,+) is a commutative group. That is,

(a) Closure. If a , b ∈ F then a + b ∈ F.
(b) Associativity. For all a , b , c ∈ F, (a + b) + c � a + (b + c).
(c) Identity. There is an identity element 0 ∈ F such that 0 + a � a + 0 � a for all a ∈ F.
(d) Inverse. For all elements a ∈ F, there exists −a ∈ F such that a + (−a) � −a + a � 0.
(e) Commutativity. a + b � b + a for all a , b ∈ F.

2. (F \ {0}, · ) is a commutative group. The identity element is called 1.

3. Distributivity. For all a , b , c ∈ F, (a + b) · c � a · c + b · c.

Examples of fields include rational numbers Q, real numbers R. Integers Z are not a field
because they do not have multiplicative inverses for non-zero elements.

Theorem 3.2. (Zp ,+, ·) for any prime p is a field. Also denoted as Fp .

The proof is left as an exercise. The difficult part of showing that multiplicative inverses exist
is already done.

Theorem 3.3. Every finite field has size pk for prime p and positive integer k. There exists a unique finite
field of size pk for all primes p and positive integers k.

We will not show this. We will however describe the construction of finite fields of size 2k . Let
f (x) be an irreducible polynomial of degree k overF2. To give some examples: x2+1 � (x+1)(x+1).
While x2 + x + 1 is irreducible.

Theorem 3.4. Let f (x) be an irreducible polynomial of degree k over F2. Then F2[x]/( f ) is a field where
F2[x] is the set of all polynomials over F2.

Example 3.5. F22 � {0, 1, x , x + 1} with irreducible polynomial x2 + x +1. Addition is to simply add
the polynomials over F2. And to multiply, first multiply the two polynomials and then compute
the remainder modulo f (x) � x2 + x + 1. e.g., x(x + 1) � x2 + x � 1 after reducing mod f . And
(x + 1)(x + 1) � x2 + 2x + 1 � x2 + 1 � x.

Similarly we can construct F28 used in AES by using the irreducible polynomial f (x) � x8 +

x4 + x3 + x + 1.
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