Admin:

Pset #1 due tonight
Pset #2 out today, due Mon 3/12
Projects! (also see talk announcement on Piazza)

Today:

Cryptographic Hash Fns II (aka “Merkle Day”)

- Merkle Trees
- Merkle Puzzles
- PK crypto based on puzzles (“Merkle puzzles”)
 - Constructions:
 - Merkle–Damgård
 - Keccak (SHA-3)

Readings:

Katz & Lindell: Ch. 5
Paar & Pelzl: Chapter 11
Ferguson: Chapter 5
To authenticate a collection of n objects:

Build a tree with n leaves x_1, x_2, \ldots, x_n & compute authenticator node as fn of values at children... This is a "Merkle tree":

```
\[
\text{Root} = h(\text{Value at } y \text{ || Value of } z)
\]
```

Root is authenticator for all n values x_1, x_2, \ldots, x_n
To authenticate x_i, give sibling of x_i & sibling of all its ancestors up to root

Apply to: time-stamping data
authentication whole file system

Need: CR

Used in Bitcoin...
Puzzles & Brute-Force Search

Want to create puzzle with solution known to creator that requires (on average) a fixed amount of work to solve.

Let \(h : \{0,1\}^* \rightarrow \{0,1\}^d \) be a crypto hash fn (e.g. SHA-256 with \(d = 256 \)).

The "puzzle" will be to invert \(h \), i.e. solve \(h(x) = y \) for \(x \) given \(y \).

To make this a puzzle, we restrict \(x \) to be in a known set \(S \) of possible solutions. E.g. \(S = \{0,1\}^s \) for \(s = 40 \).

To create a puzzle, pick \(x \in S \) at random, compute \(y = h(x) \).

Difficulty of solving is \(|S|/2 \) by brute-force search.

If \(s < d \), there will be no "false solutions"—no collisions.

Can create multiple (keyed) puzzles \((k, y)\) means solving \(h(k, x) = y \) for \(x \in S \).

Puzzle spec is \((h, k, s, y)\).

Puzzle creator knows solution.

Can also have puzzles where creator doesn't know solution with truncated hashes

\(h : \{0,1\}^* \rightarrow \{0,1\}^s \).

Try \(x \) at random until \(h(x) = y \).
Hash cash (Adam Back, 1997)

- Anti-spam measure
- Requires sender to provide "proof of work" ("stomp")
- Email without POW or from sender on whitelisted is discarded.
- POW:
 solve puzzle $h(k, r) = 0000000000000000$ where $k =$ sender||receiver||date||time
 $r =$ variable to be solved for
- Include r in header as POW
- easy for receiver to verify payment (POW)
- takes $x 2^{20}$ trials to solve
- doesn't work well against botnets 😞
Merkle puzzles

- First "public key" system (really: key agreement)

\[Alice \rightarrow Eve \rightarrow Bob \]

Eve is passive eavesdropper. How can Alice & Bob agree on a key?

Use puzzles (with restricted domain, so have unique solns)

\[n = \# \text{puzzles of difficulty } 2^{500} = D \]

1. Bob chooses \(n \) values \(x_1, x_2, \ldots, x_n \) from \(S = \{0, 1\}^5 \)

Bob computes \(y_i = h(i \| x_i) \)

Bob sends \((y_i, E_{x_i}(K_i)) \) to Alice for \(1 \leq i \leq n \), where \(K_i \in \{0, 1\}^{256} \)

2. Alice picks random \(i \) from \(\{n/2, n/2 + 1, \ldots, n\} \)

Alice solves \(P_i \) for \(x_i \)

"decrypts to obtain \(K_i \)

"sends \(h(K_i) \) to Bob

3. Bob & Alice use \(K_i \) to communicate securely from then on.

Time for good guys = \(\frac{O(n)}{Bob} + \frac{O(D)}{Alice} \)

Time for Eve = \(O(n \cdot D) \)

For \(n = D = 10^9 \), "almost practical".
Hash function construction ("Merkle-Damgard" style)

- Choose output size \(d\) (e.g. \(d = 256\) bits)
- Choose "chaining variable" size \(c\) (e.g. \(c = 512\) bits)

 [Must have \(c > d\); better if \(c > 2d\)...]

- Choose "message block size" \(b\) (e.g. \(b = 512\) bits)
- Design "compression function" \(f\)

\[f : \mathbb{F}_2 \times \mathbb{F}_2^b \rightarrow \mathbb{F}_2^c \]

[F should be OW, CR, PR, NM, TCR, ...]

- Merkle-Damgard is essentially a "mode of operation" allowing for variable-length inputs:

* Choose a \(c\)-bit initialization vector \(IV, c_0\)

[Note that \(c_0\) is fixed & public.]

* [Padding] Given message, append

 - \(10^b\) bits

 - fixed-length representation of length of input

 so result is a multiple of \(b\) bits in length:

\[M = M_1, M_2, \ldots, M_n \] (\(n\) \(b\)-bit blocks)
h \{
\begin{align*}
\text{Then: } &\quad h(m) = c_n \text{ truncated to } d \text{ bits} \\
\text{Theorem: } &\quad \text{IF } f \text{ is CR, then so is } h. \\
\text{Proof: } &\quad \text{Given collision for } h, \text{ can find one for } f \text{ by working backwards through chain. } \\
\text{Thm: } &\quad \text{Similarly for OW.} \\
\end{align*}
\]

Common design pattern for \(f \):

\[
f(c_{i-1}, M_i) = c_{i-1} \oplus E(M_i, c_{i-1})
\]

where \(E(K, M) \) is an encryption function (block cipher) with \(b \)-bit key and \(c \)-bit input/output blocks.

(Davies-Meyer construction)
Typical compression function (MD5):

- Chaining variable & output are 128 bits = 4 x 32
- IV = fixed value
- 64 rounds; each modifies state (in reversible way) based on selected message word
- Message block b = 512 bits considered as 16 32-bit words
- Uses end-around XOR too around entire compression fn (as above)

![Diagram of MD5 compression function]

Xiaoyun Wang discovered how to make collision for MD4, MD5...
("Differential Cryptanalysis")

\[g(x, y) = \begin{cases}
xy \oplus x \oplus y \oplus \overline{e} \\
xy \oplus y \oplus \overline{x} \\
xy \oplus y \oplus \overline{x} \\
y \oplus x
\end{cases} \]

depending on round
Keccak = SHA-3

Keccak Sponge Construction

- Output size: $d = 256$ bits
- State size: $r = 1088$ bits
- Round count: $c = 512$

Input:
- Padding with $w = 64$ bits
- Nonce padding
- Finalization

$w_{final} = 384$, $l = 1600$, $r = 60$, $c = 343$, $d = 256$