
Massachusetts Institute of Technology Handout 5
6.857: Network and Computer Security April 2, 2018
Professors Ronald L. Rivest and Yael Tauman Kalai Due: April 23, 2018

Problem Set 4

This problem set is due on Monday, April 23, 2018 at 11:59 PM. Please note our late submission penalty
policy in the course information handout. Please submit your problem set, in PDF format, on Gradescope.
Each problem should be in a separate PDF. When submitting the problem in Gradescope, ensure that all
your group members are listed on Gradescope, and not in the PDF alone.

You are to work on this problem set with groups of your choosing of size three or four. If you need help
finding a group, try posting on Piazza or email 6.857-tas@mit.edu. You don’t have to tell us your group
members, just make sure you indicate them on Gradescope. Be sure that all group members can explain the
solutions. See Handout 1 (Course Information) for our policy on collaboration.

Homework must be submitted electronically! Each problem answer must be provided as a separate pdf.
Mark the top of each page with your group member names, the course number (6.857), the problem set
number and question, and the date. We have provided templates for LATEX and Microsoft Word on the
course website (see the Resources page).

Grading: All problems are worth 10 points.
With the authors’ permission, we may distribute our favorite solution to each problem as the “official”

solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in your profile on your
homework submission.

Our department is collecting statistics on how much time students are spending on psets, etc. For each
problem, please give your estimate of the number of person-hours your team spent on that problem.

Problem 4-1. El-Gamal Encryption and Pedersen Commitments

(a) Alice and Bob decide the Pedersen commitment scheme is too slow for them (repeated exponentiation
is very computationally expensive). Help Alice and Bob by describing an alternative commitment
scheme that uses a hash function H such that the scheme is (a) hiding and binding in the random
oracle model and (b) non-malleable in the random oracle model.
(The new scheme should not use any exponentiations.)

(b) Let G be a group of order t. Let a be some element of G. Let k ≥ 0 be an integer such that
gcd(k, t) = 1. Show that order(a) = order(ak).

(c) Alice and Bob have heard about the El-Gamal encryption scheme and decide to implement it in the
following way: they choose a large, safe prime p (i.e., (p − 1)/2 is also a prime), choose a random
generator g ∈ Z∗

p, and set PK = (g, y = gx) and SK = x. They encrypt any message m ∈ Z∗
p by

choosing a random k and outputting (gk, yk ·m). Is this secure? Explain.
(d) Alice and Bob decide to use the same distribution (g, y) as above for producing Pedersen Commit-

ments. Namely, Alice, upon receiving parameters (g, y) as above, commits to a m ∈ {0, 1, . . . p − 2}
by choosing random r and sending gm · yr to Bob. Is this scheme binding? Is it hiding? Explain.

Problem 4-2. Digital Signatures

(a) Alice is worried about leakage when using Full Domain Hash (FDH) RSA signatures, and therefore
decides to use n = pqr as her public key, where p, q, r are random 1024-bit primes (instead of n = pq).
Let H be a hash function. The public key PK = (n, e) and the secret key is1 SK = (n, d) where
de ≡ 1 (mod ϕ(n)). The Signing and Verification algorithms are as follows:

• Sign((SK,H),m) = (H(m))d mod n.
1The previous version of the pset had SK = n, p, q, e.



6.857 : Handout 5: Problem Set 4 2

• Verify((PK,H),m, σ) = 1 if and only if σe = H(m) mod n.
Is the new scheme as secure as the original one where n = pq where p, q are random 1024-bit primes?
Does it remain secure if one of the prime factors is leaked? Explain.

(b) You do not have to answer anything for this part. In the previous version it was the set-up for the
next part, which has now been moved to the next part.

(c) We saw in class that any trapdoor permutation can be used to construct a digital signature. However,
the only trapdoor permutation candidate known is the RSA permutation.
Let p, q be random 1024-bit primes such that p, q ≡ 3 (mod 4), and let n = pq. Consider the function
f : Z∗

n → Z∗
n, defined by f(x) = x2 mod n.

Show that f is a trapdoor function. Namely, show how one can invert f (efficiently) given the prime
factors p, q, and argue that f is hard-to-invert given only n (without knowing p, q), assuming the
hardness of factoring.
(For the latter part, show that one can factor n in to primes p, q, given black-box access to an algorithm
that given y ∈ Z∗

n outputs x such that x2 ≡ y mod n (if such a square root x exists).)
(d) Alice would like to use this trapdoor function f to construct a digital signature scheme, as suggested

in the seminal paper of Diffie and Hellman. Namely, to compute a signature of m simply compute
f−1(H(m)) using the trapdoor. However, our function f is not a permutation, and H(m) may not
have an inverse (i.e., a square root). Suggest a way to modify this scheme to overcome this problem,
so that every message can be signed (given the trapdoor p, q).

Problem 4-3. 6857coin
Rumor has it that a new cryptocurrency has sprung up at MIT!
In 6857coin, a proof-of-work called AESHAM2 is used and it expects 3 nonces. It first computes two AES
keys from the first nonce. Then it expects the cross sums of the AES ciphertexts on the next two nonces to
have small hamming distance. For more details, please refer to the website.
Note: this problem is somewhat of an experiment for us, and we reserve the right to tweak it with reasonable
warning as events unfold.

(a) To get started, visit http://6857coin.csail.mit.edu/ and read the API for 6857coin. Then, look
at the provided miner.py template and make the required modifications to begin mining. You will
receive full credit for part (a) after successfully mining a block that appends to any tree rooted at the
genesis block. To receive credit for your team, include your team members’ usernames separated by
commas in the block contents.

(b) Now see where you can optimize your miner even further. The slower your miner is in comparison to
other miners, the longer it will take to add to the main (longest) chain. You will receive full credit for
part (b) if you ever append to the main chain and a description of your strategy for mining a block
on the main chain. Remember to include your team in the block contents! Also note that the earlier
you start, the slower your competition will be! Feel free to get creative by using different languages
or hardware.


