
Implementing ML Algorithms with HE

Yilun Du
yilundu@mit.edu

Laura Gustafson
lgustaf@mit.edu

David Huang
huangd@mit.edu

Kelly Peterson
kellypet@mit.edu

Abstract

An increase in cloud-based computing leads to an in-
creased worry in the security of user data. Typically, data is
sent to a third-party server which performs analytics or ma-
chine learning on the data. However, in most of these sce-
narios, the data involved is sensitive and should remain pri-
vate. Homomorphic encryption, a form of encryption that
allows functions to be performed on encrypted ciphertext,
allows privacy-preserving data analysis of existing large
private, sensitive data sets. We implement and analyze the
performance of linear regression and K-means clustering
using the homomorphic encryption library SEAL and pro-
vide an extension of the SEAL library to matrix operations.

1. Introduction

Cloud-based machine learning platforms provide scal-
able machine learning resources with reduced hardware cost
and maintenance overhead for end users. Similarly, cloud
computing continues to see increasing adoption, as it offers
many benefits including a minimal need for interactions be-
tween data providers and the cloud, and the removal of most
of the computational power required by individual analysts.
However, using third-party cloud servers for computation
raises privacy concerns, especially when sensitive data such
as medical records, financial, or federal data is involved.
Thus, it is imperative that cloud computing does not violate
the privacy of sensitive data. Today, there exist solutions
to this problem in the form of off-the-shelf tools for Secure
Multiparty Computation (SMC) protocols. Unfortunately,
many of these tools are costly and inefficient to deploy in
real-world cloud computing systems and hinder the devel-
opment of privacy-preserving applications in the cloud.

One method of preserving the privacy and security of
data when outsourcing computation is to encrypt the data
before uploading it to the cloud. However, the utility of the
data becomes severely limited if encryption prevents use-
ful computations from being performed. Fortunately, this
challenge can be solved by using a homomorphic encryp-
tion scheme, which allows one to perform operations on en-
crypted data without decrypting it. Homomorphic encryp-

tion was originally proposed by Rivest et al. (1978) as a
way to encrypt data such that certain operations can be per-
formed on it without decrypting it first. Moreover, recent
advancements in cryptography have led to the development
of fully homomorphic encryption (FHE) schemes, which
support the evaluation of arbitrary functions on encrypted
data. The first FHE scheme was presented in 2009 by Craig
Gentry; this scheme was the first to support an arbitrary
number of additions and multiplications on encrypted data.
However, such FHE schemes rely on a bootstrapping pro-
cedure in order to maintain usable levels of noise, which is
extremely computationally expensive.

Since the first FHE scheme was constructed by Gentry
in 2009, subsequent schemes [10, 8] have become increas-
ingly practical, with improved performance and parame-
ters. Then, in 2011, Gentry and Shai Halevi presented the
first working FHE implementation. Following this, several
other HE schemes have been implemented, including the
Fan-Vercauteren (FV) scheme implemented in Microsofts
Simple Encrypted Arithmetic Library (SEAL)[9].

Although there exist several working HE implementa-
tions today, most are impractical or infeasible for use on
large datasets. Indeed, very few implementations have been
proven efficient for large-scale applications. In addition,
there exist even fewer machine learning algorithms imple-
mented using HE today. Thus, in this project, we wanted
to explore implementing a working machine learning algo-
rithm using HE.

This work proposes a protocol for performing linear re-
gression and k-means clustering over a dataset that is dis-
tributed over multiple parties.

Our goal was to build something to demonstrate some
of the many capabilities made possible by using homo-
morphic encryption. We also wanted to provide building
blocks that others can use to implement additional FHE ma-
chine learning algorithms. In addition, we hoped to not
only build a proof-of-concept demonstrating the capabil-
ities of modern-day FHE software libraries, but hoped to
also provide a working, open-source prototype which could
be immediately deployed and tested by researchers, orga-
nizations, and other interested parties. We hope that the
result of our implementation lowers the barrier to entry for

1

others to begin using and developing FHE systems, mak-
ing FHE-based ML algorithms more accessible to novice
engineers, researchers, and others in the cryptography and
machine learning communities.

Moreover, this project aimed to evaluate the current level
of maturity of FHE Machine Learning implementations and
the SEAL cryptographic library. Conducting this evaluation
not only highlights the great potential of SEAL and FHE-
based ML algorithms but also underscores a need for the
greater community to continue researching, developing, and
extending the SEAL library and FHE applications.

Based on the work of Nikolaenko, et. al., [12], we were
inspired to implement a privacy-preserving variant of linear
regression using homomorphic encryption. In their paper,
Privacy-Preserving Ridge Regression on Hundreds of Mil-
lions of Records, Nikolaenko et. al present a system for
privacy-preserving ridge regression using both homomor-
phic encryption and garbled circuits. Like ridge regression,
linear regression is a fundamental building block for many
machine learning operations. Thus, it seemed logical to ex-
tend the work of Nikolaenko by exploring the possibility
of implementing linear regression. However, unlike Niko-
laenko, our implementation relies only upon homomorphic
encryption, not garbled circuits.

Similarly, we were inspired by the work of Bost et.al.
[4] to implement several crucial classification algorithms
for machine learning. Given that there appeared to already
exist a handful of implementations of classification algo-
rithms, it seemed logical to implement a different class of
machine algorithm. Since we had already decided to imple-
ment a regression algorithm (linear regression), we chose to
implement a clustering algorithm. In particular, we chose
to pursue k-means clustering due to its breadth of useful
applications, especially in the health and medical field.

2. Related Work

2.1. Homomorphic Encryption

An operation f is homomorphic in an encryption scheme
if Dec(f(Enc(x))) = f(x). A Somewhat Homomor-
phic Encryption (SHE) scheme allows only a limited sub-
set of functions to be evaluated homomorphically, while a
Fully Homomorphic Encryption (FHE) scheme allows ar-
bitrary functions. Some SHE schemes, such as FV and
YASHE [10], allow homomorphic addition and multiplica-
tion, which would allow for arbitrary computation, but are
limited in the depth of a function evaluation circuit by noise
growth. Such SHE schemes can be extended to be fully ho-
momorphic by performing a bootstrapping procedure to re-
duce the noise. To do so involves evaluating the decryption
circuit homomorphically. The need to perform this proce-
dure repeatedly causes such FHE schemes to be extremely
computationally expensive in both time and memory.

2.2. HE Linear Regression

Regression algorithms are important mechanisms used
to solve machine learning problems. For this reason, regres-
sion is one of the first machine learning algorithms to have
been implemented using HE. Previous studies have worked
to produce implementations of different regression models
using HE. This includes implementations of Ridge Regres-
sion, Linear Regression, and Multiple Linear Regression.
Below, we expand upon related approaches to Liner Regres-
sion in HE.

Various previous studies have presented protocols used
to obtain a linear regression model from FHE encrypted
data. Several studies used Cramers rule or matrix inver-
sion to obtain a linear regression model. However, their
proposed method is only practical for data with small di-
mensions (i.e. less than 6). [16]

Almost none of the studies we found had used an ex-
isting, off-the-shelf implementation of an HE scheme or a
public library implementing HE. Most studies implemented
linear regression in one of the following ways, which in-
cluded either i) implementing their own, modified variants
of proposed HE schemes, or ii) providing their own HE
schemes, or iii) borrowing mathematical elements from ex-
isting HE libraries (such as HELib) to construct a new im-
plementation. [12, 2, 3, 1]. To our knowledge, there exists
no off-the-shelf implementation of linear regression using
a preexisting HE implementation or HE library. Thus, we
chose to explore the viability of using an existing HE li-
brary (i.e. SEAL) and its underlying HE scheme as a means
of building a linear regression model, and sought to test the
quality of the results we obtained.

Linear Regression The goal in linear regression is to cre-
ate a line of best fit for a set of data. The input data X is
a series of vectors transposed (so that each data point is a
row). Each input data point has a corresponding value. The
values are represented as a vector y such that the value of the
vector of row i is yi. We can solve this problem using the
Least Square’s method. This method involves solving the
following equation: θ = (X ∗XT)−1 ∗XT ∗ y. θ is a vec-
tor of degree d. To obtain the predicted value for a new data
point v, one simply needs to calculate θv. As comparison is
generally not possible in Homomorphic Encryption, many
of the standard techniques to solve a system of linear equa-
tions are not possible. There were four main approaches to
solving this equation that we found that been experimented
with for Linear Regression on Encrypted Data: Cholesky
decomposition, Division-Free Matrix Inversion, Cramer’s
Rule, and Gradient Descent.

Cholesky Decomposition The technique of Cholesky de-
composition is a data-agnostic method (i.e. its execution

2

path does not depend on the input) which can be used to
solve linear systems, such solving the Linear Regression
equation. Cholesky decomposition decomposes a matrix
A into two lower triangular matrices B and BT such that
B ∗ BT = A. Using A = X ∗ XT , we can get two lower
triangular matrices that making solving θ = (X ∗XT)−1 ∗
XT ∗ y easy using back-propagation.

For computation on unencrypted matrices, Cholesky de-
composition has been proven to be roughly twice as efficient
as LU decomposition. Moreover, it is often advantageous to
use Cholesky decomposition when efficient, exact solutions
to matrix inversion are desired. Cramer’s rule is exact an-
other method for performing matrix inversion, but is far less
efficient.

Despite the benefits of Cholesky decomposition, its use
Cholesky is far more limited because it can only be ap-
plied to symmetric, positive, semidefinite matrices. Thus,
it seems impractical to rely on Cholesky decomposition in
real-world settings as we cannot feasibly assume that all in-
put data are in the form of symmetric, positive, definite ma-
trices. In addition, Cholesky decomposition, requires the
ability to take square roots and perform division [12]; un-
fortunately, these operations are not yet built into SEAL. As
a result, linear regression using Cholesky decomposition is
not readily implementable using SEAL.

Division-Free Matrix Inversion In the paper, Using
Fully Homomorphic Encryption for Statistical, Ordinal,
and Numerical Data, the authors propose an alternative ap-
proach to building a linear regression model with high di-
mensional data from FHE ciphertexts [11]. Unlike alter-
native approaches, the computational complexity of their
method does not blow up factorially with increased data di-
mensions. Central to their approach is the use of a division-
free variant of iterative matrix inversion, which allows them
to more efficiently compute the matrix inversion on FHE
encrypted matrices.

With this approach, the authors are able to perform lin-
ear regression on large-scale datasets. For example, letting
N denote the number of data points and d denote the di-
mensionality of the input data, they are able to run linear
regression on one dataset with as many as N = 32, 561 and
d = 6, as well as on another dataset with N = 1, 994 and
d = 20.

Despite the benefits of increased scalability, their ap-
proach is not practical without the use of several key as-
sumptions. The method they use for division-free matrix
inversion of a matrix M , relies on the assumption that the
largest eigenvalue of M is known beforehand. It is neces-
sary for the largest eigenvalue to be known in order for their
method to converge quadratically to a close approximation
of the inverse of matrixM . However, this assumption is not
practical because, in typical real-world settings, the largest

eigenvalue of an FHE encrypted matrix would not be known
beforehand. To obtain the largest eigenvalue of a matrixM ,
the authors apply PCA, which returns the eigenvalues of the
covariance matrix, Σ. Then, they use an iterative algorithm
(the PowerMethod), to evaluate the k-th eigenvalue λk, and
the corresponding principal component uk with some spec-
ified T number of iterations. It follows that evaluating the
k-th eigenvalue for k = 1 gives them the value of the largest
eigenvalue ofM . Performing PCA before running division-
free matrix inversion adds significant complexity to the au-
thors’ proposed method. Experimental results showed that
evaluation time of PCA increases linearly with input di-
mension, and evaluation time of linear regression increases
quadratically with input dimension. In addition, division
is required to perform the variants of PCA and the Power-
Method leverage in their protocol, which means their ap-
proach is not immediately implementable in SEAL (due to
SEAL’s lack of division and square root operations).

For the above reasons, we did not choose to implement
this approach for linear regression in FHE. We also note that
we are only aware of HE implementations of division-free
matrix inversion using HElib; to our knowledge, no such
implementation exists using SEAL.

Cramer’s Rule Cramer’s rule is an exact method used to
solve a system of linear equations. Cramer’s rule states that
A−1 = 1

det(A) ∗ adj(A). Using A = X ∗ XT , we can
easily compute A−1 given that we calculate the determi-
nant and adjugate matrix. Using Laplace’s formula and co-
factors, we can solve for both of these without using divi-
sion, square root, or comparison operations. Like Cholesky
decomposition, Cramer’s rule is often advantageous when
data-agnostic, exact methods are desired. For small dimen-
sions, it is feasible to simply hard-code the computations
necessary to compute the result. For larger dimensions,
however, the problem needs to be solved recursively.

Gradient Descent Another relatively efficient method for
solving linear systems is gradient descent. Using a fixed
number of iterations of gradient descent, one can approxi-
mate a reasonable solution to ‖Aβ− b‖22. When the matrix,
A, is sparse, gradient descent is often preferred over exact
methods. An obvious drawback of using gradient descent
for linear regression is that it only approximates solutions.
Moreover, the accuracy of the resulting approximation is of-
ten depend on a the number of fixed iterations performed;
choosing the optimal number of iterations can require extra
work upfront. In addition, due to the iterative nature of the
gradient descent method, any errors in the estimation of B
become amplified with each iteration, which can then result
in severely inaccurate estimations of the solution to a linear
system.

3

However, in some scenarios, such as when the matrix
A is sparse, gradient descent is ideal. One study, Fast
and Secure Linear Regression and Biometric Authentica-
tion with Security Update, [1] implemented a secure, HE
system with linear regression using gradient descent. With
this approach, the authors were able to able to successfully
perform linear regression over a simulated dataset of 108

records each with dimensionality, d = 20 in about 10 min-
utes. However, there solution is not error-free, as gradient
descent provides only approximate solutions.

2.3. Privacy Preserving K-means

Several past publications have explored privacy preserv-
ing K-means algorithm. However, to our knowledge, our
result is the first that has explored the use of a single server
to compute clusters through a homomorphic encryption li-
brary. Previous attempts [13, 14] involve multiple cross
client communication to achieve collection operations on
encrypted data.

2.4. Other Privacy-Preserving Machine Learning
Algorithms

Exploring the application of HE to machine learning
problems is not a new phenomenon. Several previous
studies have demonstrated that it is possible to implement
privacy-preserving machine learning algorithms by using
homomorphic encryption schemes. The available research
can be divided into several groups on the basis of what type
of algorithm or machine learning problem each paper ex-
plores. At a high level, research into other privacy preserv-
ing machine learn algorithms can roughly be divided into
the following groups:

• Regression: (Linear Regression, Ridge Regression)
[12, 6, 16, 1]

• Classification: (Linear Means Classifier, Naive Bayes,
Decision Trees, SVM) [7, 4]

• Clustering: (K-Means, K-NN)[13, 14], and

• Neural networks: (Crypto-Nets) [17]

3. Problem Description & Threat Model
In this section, we provide a brief overview of the se-

cure multi-party computation problem we seek to solve us-
ing FHE Machine Learning algorithms. We give two practi-
cal, real-world use cases. Finally, we describe the problem’s
Threat Model.

The union of cloud computing and machine learning has
fundamentally transformed the value of data and enabled
the development of myriad complex technological innova-
tions. However, a dichotomy seemingly exists between the

increasing need to make more and more data available, and
the necessity to protect the confidentiality of this data. This
problem can be formalized as a scenario in which a sin-
gle entity (i.e. a Cloud Service Provider) performs ma-
chine learning on a multi-party dataset aggregated from var-
ious, distinct sources (i.e. Data Owners). In this scenario,
each Data Owner should only be allowed access to the data
he/she owns, and should learn nothing about the data pro-
vided by other Data Owners.

In the scenarios we will consider, each party has some
of the data points which comprise the training set. In other
words, we assume a horizontally partitioned dataset. We
focus on the following challenge: training a machine learn-
ing model (e.g. linear regression or k-means clustering) on
data points that must be kept confidential and are owned by
multiple parties.

3.1. Example Use Cases

Below, we provide concrete examples of real-world sce-
narios in which it would be advantageous to use FHE-based
machine learning algorithms. Specifically, we illustrate two
practical scenarios in which it would be advantageous to ap-
ply FHE implementations of K-Means clustering and Lin-
ear regression, respectively. These scenarios are easily gen-
eralizable and demonstrate the importance of similar, effi-
cient FHE implementations.

3.1.1 Example A: K-Means Clustering

K-Means clustering has many applications, especially in
the medical field. A common approach is for medical re-
searchers to use k-means clustering to investigate how pa-
tients with similar attributes might be related. For example,
medical researchers or doctors located across several hos-
pitals might apply k-means clustering to categorize patients
as having high or low risk of developing heart disease on
the basis of high blood pressure and cholesterol level. Due
to privacy agreements such as HIPAA, doctors and medi-
cal researchers are prohibited from sharing sensitive patient
information with each other or with third parties. How-
ever, using a variant of K-Means clustering with HE, the
researchers could run k-means on their aggregated dataset
without revealing any sensitive information about individ-
ual patients.

3.1.2 Example B: Linear Regression

Consider a doctor who would like to use a given linear re-
gression method in order to predict the likelihood of a pa-
tient developing breast cancer on the basis of health mea-
surements (e.g. age, height, weight, ethnicity, BMI, blood
type) and test results (e.g. mammograms, MRI scans). In
order to avoid computing a biased model, it is ideal to run
the selected linear regression model on data points collected

4

in different hospitals in various countries across the world.
On the other hand, each hospital cannot legally share unen-
crypted patients sensitive data (i.e. the measurements and
test results) with other hospitals or with a third party (e.g. a
cloud-computing server).

3.2. Threat Model

The adversaries in this model can be divided into three
categories:

1. The server

2. Malicious users

3. External adversaries (e.g. attackers listening in on
client-server communication)

Our goal is to ensure that the server learns nothing about
input data received from users, and that all parties involved
in providing input data to an aggregated dataset are unable
to learn anything about each other’s data.

We do not assume that the server is honest and assume
that there may exist adversaries trying to eavesdrop on com-
munication between users and the server. Our assumptions
about the honesty of users is dependent on which algorithm
is in consideration; in linear regression, we assume that
there exist some malicious users; in k-means clustering, we
assume that all users are honest.

4. Protocol Description
4.1. HE Linear Regression Protocol

There are users, who own data that they want to run LR
on. There is an untrusted server which will perform the
computations. One of the users is known to be trusted, and
is called the secure user. The secure user is in charge of
homomorphic Key generation and distribution.

4.1.1 Input

Each user has a unique shared secret key with the server
(KServer−User). This key is generated using Diffie-
Hellman key exchange. Each user also has a unique
shared secret key with the secure user (KSecureUser−User).
This key is generated using Diffie-Hellman key ex-
change. Each user calculates the number of data points
(n) and sends Enc(KServer−User, n) to the server Each
user calculates the number of data points (d) and sends
Enc(KServer−User, d) to the server. If a users d does not
match the other users d, the server will send the user and er-
ror and ask for a new value. The server then decrypts all of
the ns and sums them together to get the total dataset size.
The server generates a random dataset (dataset−random)
which approximately the same number of data points and
same dimension as the desired dataset. The server runs

the linear regression model on dataset − random. The
server then creates a set of homomorphic keys and encrypts
dataset − random using them. The server then runs the
linear regression algorithm on Enc(dataset − random).
The server will tweak the parameters of the homomorphic
key generation until the results from linear regression on
encrypted data matches the results from the non-encrypted
data.

The server encrypts the required values for
the parameters of key generation and sends back
Enc(KServer−Secure−User, parameter − values) to the
secure user. The secure user uses these parameters to gener-
ate a public/private key pair for Homomorphic Encryption.
The secure user sends Enc(KSecure−User−User,KML)
(the private key for Homomorphic Encryption) to each of
the users using their unique shared key. The users now
all know the secret key. This is the secret key used for
homomorphic encryption. Each user encrypts his data with
SKML. He then encrypts his data using KServer−User and
sends it to the server.

Figure 1. Diagram of how information flows through our system
to generate the private homomorphic key.

4.1.2 Linear Regression Model

The server receives all of the data from the users. The server
decrypts each batch of data using KServer−User for each
user. The resulting data is still encrypted using SKML,
which the server does not know. The server then runs the
Linear Regression algorithm on the data-set. After this al-
gorithm has completed, the server has computed the regres-
sion Matrix and determinant. As this was done on encrypted
data, the resulting matrix (Enc(SKML,M)) and determi-
nant (Enc(SKML, d)) are encrypted. The server can not
decrypt either of these.

4.1.3 Output (Version 1)

The server uses KServer−User to encrypt and send
back Enc(KServer−User, Enc(KML,M)) and
Enc(KServer−User, Enc(KML, d)) for each user. Each

5

user then uses KServer−User to decrypt the messages into
Enc(KML,M) and Enc(KML, d). As each user knows
the homomorphic encryption secret key, they can decrypt
the results into M (the vector) and d. Whenever a user
wants to get predict using the regression for a new data
point x, they only need to compute 1

d ∗ (Mx).

Figure 2. Diagram of how the data and results would flow through
our system for output version 1.

4.1.4 Output (Version 2)

The server now has a Linear Regression model that
it can not decrypt. When a user wants to com-
pute the regression on a new data point x, they send
Enc(KServer−User, Enc(SKML, x)) to the server. The
server decrypts it into Enc(SKML, x). The server
then computes Enc(SKML,M) ∗ Enc(SKML, x) =
Enc(SKML, y). The server uses KServer−User to encrypt
and send back Enc(KServer−User, Enc(SKML, y)) and
Enc(KServer−User, Enc(SKML, d)) to the user. The user
then decrypts Enc(SKML, y) and Enc(SKML, d) using
SKML into y and d. The resulting y-value (or regression
result) for the vector x is y/d. As the data is decrypted at
this point the user can easily compute this.

4.2. HE Linear Regression Safety

4.2.1 Server

As the server does not know SKML, it is unable to decrypt
any of the data it is given. Even when the server computes
the resulting linear regression matrix, it can not decrypt it
to know what the model is. The only knowledge the server
has about the data and resulting model is the number of data
points and dimension of the each data point.

4.2.2 Malicious Users

Malicious Users are unable to determine any of the data that
the model was trained on except for the data that they up-
loaded. As they only know their specific KServer−User,
they will not be able to decrypt any of the messages be-
tween other users and the server. Therefore they will not be
able to determine any data from any other user.

4.2.3 External Adversaries

Any adversary listening to communication between the
server and a user will not be able to gain any knowledge
about the data or model, as they do not knowKServer−User

for any of the users. Even if the adversary was able to trick
the server into thinking it was a valid user (and gaining their
own KServer−User), they would not be able to learn any
valuable information about the either the data or the model.
In Output Version 1 the user could ask the server for the
model and receive it. The model that they received, how-
ever, is encrypted using SKML, so the adversary would not
be able to decrypt it. The adversary might be able, however,
to see the dimension of the matrix. (As the resulting matrix
is just a vector of encrypted points (i.e. the coefficients)).
If this is considered a security flaw, the server could then
generated a series of random numbers (and encrypt them
using PKML) and append them to the bottom of the vector.
As the users know the dimension (d) of the data-set, they
can just use the first d dimensions of the resulting vector for
their calculations.

4.3. Client Communication Protocol

Certain operations are difficult to simulate in the SEAL
library such as division, as most approximation algorithms
require an order of magnitude estimate of the reciprocal in
order to converge. Therefore, to allow computation of recip-
rocals on the server side, we propose the following protocol
for computing the reciprocal of a cipher-text C.

1. Given a ciphertext C, the server chooses some random
noise e, and gets y = Ce and sends the result to a
client.

2. The client, upon receiving y, decrypts y using the se-
cret key to get y′. The client then calculates z′ = 1/y′

and encrypts z′ to z and sends the result to the server.

3. The server, upon receiving z, computes 1/C = ze ho-
momorphically.

Unfortunately, despite obscuring data with noise, the
client may still have order of magnitude estimation of vari-
ous values in our K-means system. To remove information
the user may receive about intermediate computations, we
also send random values for the client to decrypt.

4.4. Division

One limitation of the seal library is the lack of a homo-
morphic division operation. One approach to resolve this
is to implement an approximate division algorithm using
only homomorphic addition and multiplication. The Gold-
schmidt method of division is as follows: in order to ap-
proximate 1

b , let Y be an initial guess, and let e = 1 − bY .

6

Then
1

b
≈ Y (1 + e)(1 + e2)(1 + e4)

However, this method requires an initial guess that is rea-
sonable close e.g. within an order of magnitude of the ac-
tual value in order for the value to converge quickly. If no
information is known about the value to be inverted, then
this method is unsuitable. In our code, we instead used the
above client communication protocol to calculate division.

4.5. K-Means Clustering Protocol

4.5.1 Input

Each user generates a shared private key for encryption and
sends their encrypted data as well as their corresponding
public key to the server. The server acknowledges receipt
of the public key if all public keys are matching and sends
an ack message to each user. Each user then sends their
encrypted dataset to the server.

4.5.2 Computation

The server aggregates all the encrypted data together and
generates a set of proposals for cluster centers ci. We cur-
rently randomly generate the center proposals, though its
initial centers can be initialized to a weighted mean of the
inputs.

We then run the following loop for a user specified num-
ber of iterations

1. For each point xi and center cj , we compute the in-
verse square distance dij = 1/(xi − cj)2

2. For each point xi and center cj , we assign xi to cj with
weight wij =

dij∑
j dij

3. We update each cluster cj =
∑

i wij ∗ xi

Figure 3. Schematic of Communication Between Client and Server

Each of the above operations can be done homomorphi-
cally using existing operations in SEAL expect for the di-
vision tasks through which we invoke the client communi-
cation protocol. In addition, in order to reduce exponential
noise increase of the newly generate centers in the third step
of the algorithm, we ask clients to decrypt and encrypt each
of our centers multiplied by random noise. An overview of
our system can be found in 3

4.6. K-Means Safety

Our protocols for K-Means and for computing recipro-
cals of numbers requires that both clients and servers be
honest and return correct results. Under the assumption that
certain clients may return fake results, we could potentially
send requests to multiple clients and take the value that is
agreed on by a majority or clients. A passive adversary lis-
tening to our communication will not gain any information
as all communication with encrypted cipher-text so an ac-
tive adversary able to modify our communication informa-
tion will impact our computations.

5. System Description
Our implementation is available on Github at here. We

used the Simple Encrypted Arithmetic Library (SEAL),
which uses the FV HE scheme, to implement two machine
learning algorithms: linear regression and k-means cluster-
ing.

5.1. SEAL Crypto library

When planning how to implement machine learning al-
gorithms using homomorphic encryption schemes, we dis-
covered that there exist several software libraries imple-
menting homomorphic encryption. These include HElib,
A λ, NFLib, and SEAL[5, 8]. The most viable options ap-
peared to be the SEAL and HElib libraries. Both libraries
implement fully homomorphic encryption schemes; SEAL
uses a more generalized version of the Fan-Vercauteren
(FV) scheme. The textbook presentation of the FV encryp-
tion scheme is a leveled, fully homomorphic, and supports
an arbitrary number of additions and multiplications on en-
crypted data.

Fortunately, the most recent version of the SEAL li-
brary (v2.1) is accompanied by detailed documentation ex-
plaining SEAL’s core functionality, as well as how to se-
lect the optimal set of parameters for good performance for
SEAL[5, 9].

6. Additions to the SEAL Library
6.1. Matrix Library

In order to make implementing machine learning algo-
rithms easier, the we first created a Matrix library. This

7

https://github.mit.edu/lgustaf/6857finalproject

matrix was represented as a 2-D vector in C++ of matrix
entries, each which was a encrypted value (BigPolyArray).
We then implemented methods for the following common
matrix operations, adding two matrices, multiplying two
matrices, multiplying a matrix by a constant, determining
the determinant of a matrix, calculating the transpose of a
matrix, and calculating the adjugate of a matrix. For deter-
mining the determinant and adjugate of a matrix, we hard-
coded in the cases for square matrices of dimension 1,2,3.
This helped increase the performance of the linear regres-
sion. For matrices of dimension 4 or larger, we used a re-
cursive algorithm to calculate the determinant and adjugate
matrix.

Determinant Calculating the determinant efficiently is
hard without division. We chose to hard-code the algo-
rithms (in terms of matrix indices) for dimensions 1,2,3.
This allowed for the fastest result, as we were not doing any
unnecessary computations to calculate the determinant. For
dimensions 4 and higher we chose to calculate the determi-
nant recursively, by using Laplace’s formula and co-factors.
This lead to a huge increase in time taken for dimensions
4 or larger. We could possibly achieve some speed up by
using CITE the division-free algorithm for these dimen-
sions. However, our results for d = 3 (where determinant
formula was hard-coded) were unconvincing that more effi-
cient computation would fix the problem of overflow.

Adjugate Matrix Similar to the determinant, we hard-
coded the results (in terms of matrix indices) for dimensions
1,2,3. Also similar to the determinant, we found the adju-
gate matrix recursively for dimensions 4 and higher using
cofactors.

6.2. Baseline model

For our baseline model we chose to use the same algo-
rithm for calculating the Least Square’s regression. We used
our existing C++ code for Linear Regression on encrypted
data and adapted it to work with non-encrypted data. This
allowed for a good timing comparison, as any inefficiencies
due to our choice of algorithm, or speed-ups by using C++
over a different language would show in the results for our
baseline. We also used our baseline model to verify the re-
sults that we received from our HE LR.

7. Linear Regression

7.1. Approach

The matrix class helped make implementing Linear Re-
gression much easier. Least-squares linear regression is the
vector θ in the following equation: θ = (X∗XT)−1∗XT ∗y
where X is the matrix of each of the data points transposed

(such that each data point is a row). y is a vector of the cor-
responding y values for each data point. The difficult part of
linear regression is computing the inverse. We chose to use
Cramer’s Rule (A−1 = 1

det(A) ∗ adj(A)) where is adj(A)

is the adjugate matrix of A. As we can efficiently do divi-
sion in SEAL, we chose to output det = det(X ∗XT) and
M = adj(X ∗ XT) ∗ ∗XT ∗ y. The resulting M is a d
dimensional vector, where d is the dimension of each of the
input vectors. If a user has an unencrypted M and det, to
run the regression on a new point v all the need to do is
calculate 1

det ∗M ∗ v.

7.2. Result Validation

First, we tested our Matrix class in order to make sure
that all of the operations worked as they were supposed to.
We created a series of test matrices for the functions, and
validated the results against Wolfram Alpha for the com-
putation. For linear regression, we validated the results that
we got from the both models by checking the coefficients of
the resulting model to see if they matched the line generated
from the data.

7.3. Parameters

In order to get accurate results from the HE LR, we
needed to carefully choose the encryption parameters in or-
der to make sure that the large number of operations that we
needed to perform did not create overflow.

Polynomial Modulus This parameter represented the
polynomial modulus for the ring R [5]. For most of the
time (degrees 1 and 2, and 100 or less data-points in degree
3), the polynomial 1x8192 + 1 was sufficient. This made the
model tolerant to 202 bits of noise. This was the second to
largest polynomial recommended by SEAL. For degree 4,
and 100-200 points in degree 3, the result were too noisy
and we needed a larger polynomial. We used 1x16384 + 1,
the largest recommended polynomial. In this case the sys-
tem was tolerant to 404 bits of noise. Because we made the
polynomial modulus so large the encryption and arithmetic
operations were very slow. Also, a larger polynomial mod-
ulus is generally less secure, which is why we tried to use a
smaller one when possible.

Plaintext Modulus This parameter represented the maxi-
mum coefficient in the plaintext space. All of the decrypted
results were /modplaintext −modulus. For most of the
linear regressions, 223 was a reasonable value for this. It’s
maximum value was 230. In the cases of the 100+ data
points for degree 4 or 500+ datapoints for degree 3, this
value (230) was not large enough. There were too many ad-
ditions/multiplications done that the value overflowed the
plaintext modulus, leading to an inaccurate result. This is

8

because the the resulting vector was supposed to be scaled
down by the determinant, but because there was no division
we were unable to scale down the result.

Decomposition Bit Count The decomposition bit count
affected the speed of relinearization and noise growth from
relinearization. A low decomposition bit count meant
slower noise growth but also slower relinearization. A
higher decomposition bit count meant faster noise growth
and faster relinearization. The decomposition bit count was
supposed to be between 1/10 and 1/2 of the significant bit
count of the coefficient modulus As we were more con-
cerned with noise growth than time taken, we chose the
minimum decomposition bit count for our current polyno-
mial modulus. For every case except degree 4, and degree
3 with 200 data points, that meant decomposition bit count
was 24. When the polynomial was 1x16384 + 1 the decom-
position bit count was 44.

8. Performance
8.1. Overview of Experiments

One motivation for performing these experiments was to
show that applying basic machine learning algorithms to
compute on encrypted data is in fact possible using open-
source software and modern-day cryptographic schemes.
Moreover, we performed these experiments in order to as-
sess whether or not these implementations were not just
possible but also practical.

In order to demonstrate the functionality of our privacy-
preserving machine learning algorithms, we conducted sev-
eral rounds of experiments in which we varied the number
of features (i.e. the datas dimensionality, d) and the num-
ber of data points (i.e. the datas volume, or number of data
points, n) used as input to train our machine learning algo-
rithms. Our experimental data is comprised of several syn-
thetically generated, numerical datasets of varying number
of points, n, and dimensionality, d.

We then compared how these parameters affected each
algorithms performance and accuracy. We note here that
our experiments confirmed the feasibility of performing ma-
chine learning on encrypted data, but revealed that current
real-world implementations are still far less practical than
similar, less privacy-focused implementations used to com-
pute on unencrypted data.

Furthermore, we compare the runtime required for these
two algorithms (linear regression and k-means clustering)
to compute on encrypted and unencrypted data to illustrate
the difference in computational costs between computing on
encrypted and unencrypted data. One of the main goals of
our research was to assess the feasibility of deploying ma-
chine learning algorithms implemented using FHE schemes
to be used in real-world applications. In such real-world

Degree Num. Points Time Noise
1 10 5008 83
1 25 43733 87
1 50 25172 86
1 100 46344 87
1 200 195172 88
1 500 246219 88
1 1000 558470 89
2 10 18920 93.5
2 25 39638 94.5
2 50 74042 96
2 100 148536 96
2 200 301047 97
2 500 780306 97.5
2 1000 2258306 98
3 10 71218 134
3 25 114733 135
3 50 182402 135
3 100 331933 136
3 200 655707 158.667
4 10 1608986 245.25
4 25 1943827 248
4 50 2504500 245

Table 1. Table 1. Results from LR on HE data

settings, these machine learning algorithms would likely be
implemented as part of larger, performance-optimized sys-
tems. For this reason, we chose to fix the security parame-
ters used by the system, as this most closely simulates how
real-world cloud systems would operate.

In the following sections, we provide a more detailed
performance analysis of linear regression and K-means
clustering based on the results of our running our experi-
ments.

8.2. Linear Regression Performance Analysis

The performance of the linear regression model de-
pended on the number of points in the data-set and the di-
mension, or number of features,of each data point. We will
evaluate the performance of the models based on time taken
to generate the model and the amount of noise in average
amount of noise in the resulting model (vector).

Table 1 shows the results for LR on HE data for many
trials varying the degree of the regression, and number of
data points we were regressing on.

Figure 4 shows the comparison in time taken for LR on
encrypted vs non-encrypted data. Here we fixed the degree
of the data to be 2. For the non-encrypted data, we ran
the sample least square’s regression algorithm as for the en-
crypted data. For every size data-set, LR on non-encrypted
data took under 1 ms to complete. For encrypted data, as
you can see from the graph, time grows somewhat linearly
with number of data points. It takes a lot longer than non-

9

Figure 4. Graph of the amount of time taken for LR on encrypted
and non-encrypted data.

encrypted data, 1000 data points here for degree 2 takes 40
minutes.

Figure 5. Graph of the amount of time taken for LR on encrypted
data for vary degrees.

Figure 5 shows the comparison in time taken for LR on
encrypted data for varying degrees. Low degrees take less
time for Linear Regression. This is because calculating the
determinant or adjugate matrix requires no or close to no
computations. For degree 4, the determinant and adjugate
matrix were calculated recursively, leading to such a signif-
icant decrease in performance. For degrees 3,4 after a cer-
tain number of data points (200 for degree 3, 50 for degree
4), the resulting LR vector became non-decryptable. This is
because there were so many additions required in the calcu-
lation that lead to the coefficient overflowing the maximum
coefficient, leading to the incorrect result in decryption.

Figure 6 shows the comparison in the amount of noise in
the result from LR on encrypted data for varying degrees.
Low degrees yield less noisy results. As you can see, once
we fix the degree, the amount of noise stays close to con-
stant. The growth of noise for larger datasets is very mini-
mal. For each of the trials in the graph, the encryption pa-
rameters were set up such that they had a noise tolerance up
to 202 bits. As you can see for the degree 3 case, the noise
is still within a reasonable threshold by the time the LR is
no longer able to compute the correct result. The reason
that this is happening is that there are so many small mul-

Figure 6. Graph of the amount of noise in the result of LR on
encrypted data for vary degrees.

tiplications and lots of additions such that the coefficients
are growing past the maximum coefficient size. Since the
coefficients are coeff mod max−coeff , this leads them
to get a new value not equal to their old. When we decrypt
the new value, it is different than the old one, giving us the
wrong result. Since we are unable to do division in SEAL,
we can not scale the numbers down at any point to prevent
this.

8.3. K-Means Performance Analysis

In this section, we examine four variables independently:
the total number of data points used, the number of inde-
pendent computing entities communicating, and the count
of clusters (means) found in the data. We only consider 2
dimensional data, though we believe the run-time on our
data will scale linearly with increased number of dimen-
sions. Each of these is evaluated independently, with all
other variables held constant, and compared to run-time.

Figure 7. Graph of the time per loop of K-means with 3 clusters(in
seconds)

We first analyzed the increase in run-time as we in-
creased the number of points being clustered in Figure 7.
We found that time increased approximately linearly with
the increased number of points. Note that the graph shows

10

Figure 8. Graph of the time per loop of K-means with 30 points

Figure 9. Graph of the noise per loop of K-means with 3 clusters(in
bits)

the amount of takes it takes to update the centers of the clus-
ter once. In a typical K-means application, we would need
to updated centers iteratively at least 10 times.

Next, we analyzed the increase of run-time as we in-
creased the number of clusters we were clustering our points
on as found in Figure 8. It appears that time is also linearly
dependent on the number of clusters we are trying to find.

We also analyzed the increase in noise as we increased
the number of points being clusters as found in Figure 9.
It appears that noise remains relatively constant despite the
large increase of points we are clustering. It appears that
with other parameters, the amount of noise of centers still
remains relatively constant. This may mean that as long
as time is disregarded, we can compute clusters for a large
number of coordinates.

For all of our analysis with used as our polynomial mod-
ulus, x8192 + 1 with default parameters. As our noise levels
were not near the noise cap of 198, we may have been able

to achieve significantly faster results with a smaller polyno-
mial modulus.

We include additional images of our algorithm running
in practice at the end of the paper.

9. System Improvements
Ideally, it would be useful and practical to improve the

scalability of our algorithm implementations. Specifically,
it would be useful for our implementation to support com-
putations on datasets with greater volume and higher di-
mensionality than the datasets used in our experimental
tests. Moreover, it would be useful to support computa-
tion on larger datasets while maintaining high performance,
accuracy, and efficiency.

Another way in which we might improve our system is
to implement faster algorithms by exploiting GPUs. Several
recent studies have explored the potential of using GPUs
as a means of accelerating fully homomorphic encryption.
These studies have shown that when GPUs are used to ac-
celerate vector operations, the resulting implementations
run significantly faster than CPU-based implementations.
For example, one such study demonstrated that a GPU-
based implementation ran up to 273.6 times faster than on
CPU [15].

Alternatively, we could accelerate the runtime of our al-
gorithms by implementing a different, faster algorithm used
to calculate the determinant of a matrix. This would es-
pecially help to accelerate our linear regression algorithm,
as well as many other machine learning algorithms which
could be implemented in the future. In particular, we would
like to implement a division-free algorithm for computing
determinants, such as the one proposed by Richard Bird [3].
This would have decreased the time to train for matrices
with dimension greater than three.

A possible other speedup would be parallelize many of
the algorithms we wrote for both K-means and linear re-
gression. Both have many repetitive operations that are in-
dependent of each other that can be done parallel.

In addition, we would like to widen the applications with
which our system might be used. One way to achieve this
would be to augment our system such that it supports not
only numeric data, but categorical and ordinal data, too.
This would allow our system to perform a wider range of
statistical procedures (e.g. histograms and k-percentile) and
would better enable our system to implement categorical
classification via machine learning algorithms.

On a different note, we would also like to improve the
usability and accessibility of the SEAL library and our al-
gorithm implementations. To do this, we would ideally add
support in SEAL for other languages to be used. This would
make the SEAL library more accessible to users unfamil-
iar with C/C++. Our first step might be to develop tools
to make C/C++ functions/methods accessible from Python

11

by generating binding (Python extension or module) from
header files. Similar tools for C/C++ binding generators
for other languages could also be developed. However, we
observe that algorithm performance using other languages
may be suboptimal compared to using C++.

10. Conclusion

In this project, we sought to explore secure, machine
learning algorithm implementations using a fully homomor-
phic encryption library, allowing efficient data analysis on
private, aggregated datasets. Specifically, we wanted to im-
plement useful Machine Learning (ML) algorithms in HE
to show whether or not applications of HE are actually pos-
sible and potentially even practical, compared to non-HE
algorithms. We chose to implement and explore two es-
sential machine learning algorithms: linear regression and a
horizontally-partitioned k-means clustering algorithm. Our
implementation was coded in C++ using Microsofts open-
source encryption library, SEAL, as a building block.

Our evaluation of our implementation suggests that, al-
though we were successful in implementing working HE
implementations for both linear regression and k-means
clustering, they proved infeasible for large-scale datasets
and relatively impractical to use when solving real-world
machine learning problems. Thus, there is still substantial
development needed in order to implement machine learn-
ing algorithms which are practical, and efficient for even
small datasets. Additionally, there is a need for signifi-
cant improvements to be made before today’s working HE
implementations are feasible on datasets with large dimen-
sionality and high volume. Despite the gap in immediate,
real-world applicability of HE-based machine learning al-
gorithms and their less privacy-preserving, non-HE counter-
parts, it is promising that there exist easily accessible tools
such as SEAL which enabled us to build working machine
learning models. We hope that our work inspires future re-
search in advancing the efficiency and practicality of HE
implementations, and ignites interest in furthering the de-
velopment of even more practical implementations of ma-
chine learning algorithms in HE.

Acknowledgements
We would like to thank our 6.857 professors Ron Rivest

and Yael Kalai for their guidance, feedback, and support
of our project. We would also like to thank our 6.857 TAs
Cheng Chen for his useful feedback and discussion about
project direction. Finally, we would also like to thank Shai
Halevi and Kristin Lauter for providing valuable advice
and insight.

References
[1] Y. Aono, T. Hayashi, L. T. Phong, and L. Wang. Fast and se-

cure linear regression and biometric authentication with se-
curity update. IACR Cryptology ePrint Archive, 2015:692,
2015.

[2] R. S. Bird. A simple division-free algorithm for com-
puting determinants. Information Processing Letters,
111(21):1072–1074, 2011.

[3] R. S. Bird. A simple division-free algorithm for computing
determinants. Information Processing Letters, 111(21):1072
– 1074, 2011.

[4] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine
learning classification over encrypted data. In NDSS, 2015.

[5] H. Chen, K. Laine, and R. Player. Simple encrypted arith-
metic library-seal v2.

[6] I. Giacomelli, S. Jha, and C. D. Page. Privacy-preserving
linear regression on distributed data. 2017.

[7] T. Graepel, K. Lauter, and M. Naehrig. Ml confidential: Ma-
chine learning on encrypted data. In International Confer-
ence on Information Security and Cryptology, pages 1–21.
Springer, 2012.

[8] S. Halevi and V. Shoup. Algorithms in helib. In International
Cryptology Conference, pages 554–571. Springer, 2014.

[9] H. C. Kim Laine and R. Player. Simple encrypted arithmetic
library-seal (v2. 1). Technical report, Technical report, Mi-
crosoft Research, 2016.

[10] T. Lepoint and M. Naehrig. A comparison of the homomor-
phic encryption schemes fv and yashe. In International Con-
ference on Cryptology in Africa, pages 318–335. Springer,
2014.

[11] W.-j. Lu, S. Kawasaki, and J. Sakuma. Using fully homomor-
phic encryption for statistical analysis of categorical, ordinal
and numerical data (full version). 2017.

[12] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye,
D. Boneh, and N. Taft. Privacy-preserving ridge regression
on hundreds of millions of records. pages 334–348, May
2013.

[13] S. Samet, A. Miri, and L. Orozco-Barbosa. Privacy preserv-
ing k-means clustering in multi-party environment. In SE-
CRYPT, pages 381–385, 2007.

[14] J. Vaidya and C. Clifton. Privacy-preserving k-means clus-
tering over vertically partitioned data. In Proceedings of the
ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 206–215. ACM, 2003.

[15] W. Wang, Z. Chen, and X. Huang. Accelerating leveled fully
homomorphic encryption using gpu. pages 2800–2803, June
2014.

[16] D. Wu and J. Haven. Using homomorphic encryption for
large scale statistical analysis, 2012.

[17] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. Lauter,
and M. Naehrig. Crypto-nets: Neural networks over en-
crypted data. arXiv preprint arXiv:1412.6181, 2014.

11. Appendix

12

Figure 10. K-means(Default center initializations in red)

Figure 11. K-means(After 1 Iteration)

Figure 12. K-means(After 5 Iterations)

Figure 13. K-means(After 10 Iterations, black dots indicate python
computed centers)

Figure 14. Linear Regression result on encrypted data(50 data
points of degree 1generated noisily around y = 0.45x)

Figure 15. Linear Regression result on encrypted data(50 data
points of degree 2 generated noisily around y = 2.63.2x)

13

Figure 16. Linear Regression result on encrypted data(50 data
points of degree 3 generated noisily around y = 1.2x2 + 2.5x +
3.8)

14

