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Abstract. With regular Bitcoin transactions, low-value, high-frequency payments
are increasingly impractical due to increasingly significant mining fees that must be
paid with each transaction. The Bitcoin Lightning Network is an extension to Bit-
coin that allows two parties to create a payment channel between themselves, allow-
ing payments to be made without committing many transactions to the blockchain,
thus avoiding substantial mining fees. However, these payments still cannot be
smaller than a satoshi, the smallest unit of Bitcoin. In this paper, we describe a
scheme for probabilistic payments in the Lightning Network, which can be utilized
to effectively make sub-satoshi microtransactions.
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1. Introduction

The Bitcoin Lightning Network is a research project currently ongoing at the Digital
Currency Initiative as part of the MIT Media Lab. The Lightning network[1] is a set
of nodes linked by 2-party payment channels built from Bitcoin smart contracts. The
software is currently being built out and initially tested on the Bitcoin Testnet[2].

For this project, we will focus on implementing probabilistic payment systems on
the Bitcoin Lightning Network. Beyond enabling trivial gambling-esque systems, prob-
abilistic payments more notably present an opportunity to emulate payments of amounts
below one satoshi, the minimum for Bitcoin. We also looked into other vulnerabilities
like flaws in the user interface, codebase implementation, and theory that compromised
the security of the system.

2. Bitcoin [3]

Bitcoin is a decentralized digital currency system that can be used to send payments
to anyone around the world. The supply of bitcoins is regulated only by software and
the agreement of users. Bitcoin uses blockchain technology, a decentralized public
ledger, to make all past transactions publicly available. Transactions are committed to
the blockchain when a new block is mined that contains the transaction. They can also
be verified by investigating the spent coins’ path through the entire block chain.

Given that blocks on the blockchain are only added and never removed, it is in-
evitable that Bitcoin is going to run into scalability issues. The size of the blockchain
has grown exponentially since it first started, and is now over 100 GB (Figure 1). To



Blockchain Size

The total size of all block headers and transactions. Not including database indexes.

Source: blockchain.info

140,000

120,000 2017/03/29 20:00
MB: 108,845

100,000

80,000

MB

60,000

40,000

20,000

2009 2010 2011 2012 2013 2014 2015 2016 2017

Figure 1. The size of the Bitcoin blockchain since its origin in 2009. Blockchain size has seen exponential
growth over the past few years, and has now reached over 100GB. (Graph from blockchain.info)

prevent transaction spam, miners now generally expect a small fee to be included with
each transaction. Even with preventive measures like this, Bitcoin is rapidly becoming
unviable for low-value high-frequency transactions.

3. Bitcoin Lightning

Bitcoin Lightning was proposed in 2016 by Poon and Dryja as a method to solve the
scalability problem of sending microtransactions between two parties [1]] [2]. In a Light-
ning payment channel, two parties —Alice and Bob —may transact amongst each other
off the chain. If Alice and Bob were using the main blockchain to broadcast and record
their n transactions, there would be mining fees for all # transactions, and the cost would
accrue significantly. However, by using the Bitcoin Lightning network, a constant num-
ber of broadcasts, the initial channel funding transaction and the final commitment trans-
actions that would close the transaction, would be broadcasted to the main blockchain. In
this sense, the Lightning Network can both help reduce “spam” on the main blockchain
and also reduce the overhead costs for transacting parties.

For the purposes of explanation, let Alice and Bob be two parties that wish to create a
lightning channel between the two and transact. All transactions that will be broadcasted
onto the main blockchain must be signed by both Alice and Bob. We define the state of a
payment channel as a distribution of money agreed upon by both parties. For example, if
Alice has 0.5BTC and Bob has 0.5BTC at state 1, and Bob decides to send Alice 0.1BTC,
then in state 2 Alice would have 0.6BTC and Bob would have 0.4BTC.

There are two main types of transactions. A funding transaction is broadcasted onto
the main blockchain, signed by both Alice and Bob in a 2-of-2 multisignature script, such



State  Alice Bob

1 0.5 - 0.5 | cip
2 0.6 - 0.4 | cop

Figure 2. An example channel between two parties, Alice and Bob, reflecting the state of their channel

that the main blockchain can acknowledge that a new payment channel holding a certain
amount of money, has been created.

A commitment transaction is a transaction that allows either party to unilaterally
close a channel at a certain state of the channel. Every commitment transaction spends
the funds created by the funding transaction, though only one is broadcasted to the
blockchain. For each state, Alice and Bob have distinct commitment transactions. Be-
cause all transactions are signed by both parties, each party must obtain the other’s signa-
ture for their own commitment transaction. That is, Alice needs Bob’s signature for her
commitment transaction for each state. A party can broadcast their commitment transac-
tion to close the channel, thus depleting the funds allocated by the funding transaction,
and causing the broadcast of other commitment transactions to be registered as double
spends. However, if a channel is incorrectly or malevolently closed at an obsolete state,
then the party broadcasting the incorrect state will be penalized and lose all of their
money. We will explain the details of the commitment transaction and how to cash out
the money in the channel in section 3.2}

3.1. Creating a Lightning Channel

To create a Lightning payment channel, Alice and Bob will initially decide how much
money to put in the channel. Let us say that Alice and Bob both put in 0.5BTC in their
shared channel, such that the channel is worth 1BTC in total. First, Alice and Bob must
first exchange their signatures for commitment transactions for state 1, where Alice and
Bob both have 0.5BTC. Only after they have exchanged these signatures can the two
broadcast the funding transaction, stating that the channel has been created. This is be-
cause if Alice and Bob are uncooperative, then if they broadcast their shared channel
onto the main blockchain, and then decide not to exchange signatures for each others’
commitment transactions, then neither party will be able to reacquire their money in the
channel.

Figure 5| describes an example channel and the associated states between Alice and
Bob. Note that at each state, Alice and Bob both have commitment transactions, signed
by the other party, that either can unilaterally broadcast to close the channel.

3.2. Transacting in a Lightning Channel
Now that the Lightning payment channel has been created, Alice and Bob wish to send

funds between each other on the channel. Transactions between Alice and Bob will in-
crement the state of the channel without having to broadcast anything onto the main
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Figure 3. A valid channel closing, referring to the state of the channel as described in ﬁgureE]

blockchain. In figure[3} if Bob decides to send Alice 0.1BTC following the initial funding
state, then at state 2 Alice will have 0.6BTC and Bob will have 0.4BTC.

When a commitment transaction has been broadcasted onto the main blockchain,
the channel has closed. Each transactions splits the funding input into two outputs, one
for each party. These outputs are asymmetric in function, although under normal cir-
cumstances both parties are able to claim their respective outputs. Let us assume, for
sake of demonstration, that Bob is broadcasting his commitment transaction C2b. One
output is given to a ’pay to pubkey hash” (P2PKH) payment address corresponding to
Alice; essentially this is a regular Bitcoin transaction output which Alice only needs
to sign. This is called the “deliverable”, denoted D2b for the commitment transaction
C2b. The other output is a ”pay to script hash” (P2SH) payment address. Bitcoin P2SH
payments require the receiving party to provide inputs that allow a provided script to
evaluate to true. For this output, the script is an OR that can be satisfied by one of two
conditions. The first of these conditions is simply for Bob to sign after some amount
of time has passed since the broadcast of the transaction. This is enforced using the
”OP_CHECKSEQUENCEVERIFY” opcode available in Bitcoin scripts. This output,
when claimed in this way, is called the “revocable delivery”, denoted RD2b in this case.

It may, however, be advantageous (and dishonest) for one party to broadcast not the
latest state in the channel (for example, in figure[5] Bob is inclined to broadcast commit-
ment transaction 1). The Lightning Network combats this by allowing a party to claim
all money placed in a payment channel if they notice that the other party has attempted to
cheat them by broadcasting an old commitment transaction. Say, for instance, that Bob
broadcasts C1b, after both parties have agreed upon state 2. Recall that Bob must wait
a period of time before he is able to claim his output from this transaction, and that this
was only one way that this output could be claimed. The other condition in the script
enables Alice to claim it! This is known as the ’breach rememdy”, denoted "BR1b” in
this case. To prevent Alice from utilizing the breach remedy for a current, and thus valid,
state, Alice is required to sign with a secret generated by Bob. This secret is unique to
the state, and both parties exchange their old secrets when they advance to a new state,
thus “revoking” their claims upon the old state.

In figure 3] we see an example of a valid commitment transaction behind broad-
casted, and the following events that would happen afterwards to allow Alice and Bob
to acquire their correct funds. Because state 2 is the most up to date state, after Bob
broadcasts his commitment transaction, Alice, can immediately sign her delivery output
to attain her 0.6BTC in the channel. Bob, after waiting, can then sign his revocable deliv-
ery output to acquire his 0.4BTC in the channel. Note that Alice cannot sign the breach
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Figure 4. An incorrect channel closing, referring to the state of the channel as described in ﬁgure|§|

rememdy output for the state 2 commitment transaction because Alice does not yet know
Bob’s secret for state 2.

In figure ] we see an example of an incorrect commitment transaction broadcasted
by Bob. Because state 1 is not the most up to date state, Bob is effectively being dishonest
and thus Alice can acquire all funds in the channel. To do this, Alice can sign her delivery
transaction to acquire the 0.5BTC that is hers at state 1. Alice can sign the breach remedy
output before Bob can sign the revocable delivery output (recall that these are, in fact, the
same output) to acquire the 0.5BTC that was Bob’s at state 1. Bob’s revocable delivery
output will now be registered as an invalid double-spend. Alice is able to use the breach
remedy because she learned Bob’s secret for state 1 when they agreed upon state 2.

To advance to a new state i, Alice and Bob must do the following:

1. Alice and Bob agree on the values in both parties’ accounts for state i + 1. Alice
and Bob both generate signatures for the other’s commitment transaction (i.e.
Alice signs Cib and Bob signs Cib) and send these.

2. Alice and Bob exchange their secrets from the previous state.

3.3. Signatures

Each transaction to be broadcasted must be signed by both parties. All transactions use
unique public key and secret keys. With z states in the channel, we must know the breach
remedy transaction secret for all n previous states in the channel, but we wish to need
to keep fewer than n signatures. To achieve this, the Bitcoin Lightning network uses
hierarchical deterministic wallets, which are effectively reverse Merkel trees, that can
reduce the number of keys kept by a party [4]]. Effectively, the parents in the trees are the
keys of the latter states. By knowing the key for state i, one can generate its child, the
key for state i — 1 or i — 2, by hashing the key and concatenating a constant parameter.

4. Probabilistic Payments

Probabilistic payment systems were first developed by Rivest and Micali in 2002 [5]] as
a way to efficiently handle micropayments. Micropayments are very small transactions.
Depending on the context, this can mean transactions on the order of dollars, cents,
or amounts even smaller than a cent. Micropayments can be useful for buying music,



watching movies, or using pay-per-view websites. However, these transactions can be
unrealistic if the overhead on each transaction is too large relative to the amount of money
exchanged.

The probabilistic payment system, referred to as Peppercoin in the original paper
[6], was originally designed to mitigate relatively large fees associated with credit card
microtransactions. The general idea of probabilistic payment is that transactions only
have some low probability of going through, but they have a high payload if they go
through. So instead of Alice paying Bob 1¢, she pays Bob $1 with probability 1,/100.
Suddenly, they will only be paying the 5¢ fee once for every 100 transactions. Thus
probabilistic payments do the job of bundling together micropayments to minimize the
amount of overhead work that must be done.

One of the biggest benefits of the Lightning Network is that it helps people do
smaller and more frequent transactions. However, the size of transactions possible
through Lightning are bounded below by the smallest unit of Bitcoin: the Satoshi. One
way to enable sub-Satoshi transactions would be to allow Alice to send Bob Satoshis
with some probability. Implementing a probabilistic payment system in Lightning would
enable the network to be able to handle “true micro-payments.

Because of security restrictions native to the Bitcoin network, only a limited number
of functions (called opcodes) can be used by the miners to determine the outcome of
the transaction. As a result, the probabilistic aspect of our probabilistic payment system
relies on the lengths of the pre-image of hashes, instead of properties that may be more
intuitive.

Here are the steps that go into how Alice would pay Bob half a Satoshi under the
probabilistic payment infrastructure in Bitcoin Lightning. £ is a hash function.

1. Bob chooses two numbers, Y; and Y, and sends the hashes to Alice.

2. Alice picks a random number X. It should be 20 or 21 bits long.

3. Alice commits to X by sending /(X) to Bob, along with two transactions (both
half-signed by Alice). See below for the format of the transactions.

4. Bob has several options at this point:

(a) Sign both and broadcast both

(b) Sign neither

(c) Sign Transaction N (where N = 1 or 2), and broadcast

(d) Send the signed Transaction N and Yy to Bob
Transaction 1:

® Sigs and len(X) = 20 (Bob gets 0S)
e Sigp and Bob waits (Bob gets 15)
e Sigs and Y> (Bob gets 0S)

Transaction 2:

e Sigy and len(X) =21 (Bob gets 0S)
e Sigp and Bob waits (Bob gets 15)
e Sigs and Y| (Bob gets 0S)

What happens next depends on what Bob picks:

(a) If Bob broadcasts both, the miners pick which transaction to carry out. This is
essentially the same as signing and broadcasting a single transaction.



(b) If Bob broadcasts neither, Alice can close the channel after waiting some time.
Obviously, Bob does not get any money.

(c) If Bob signs and broadcasts Transaction 1, that means Bob is betting that the
len(X) = 21. He gives Alice a window of time to prove that he picked wrong. If
Alice reveals that len(X) = 20, then the transaction goes through where Bob gets
0S. If nothing happens, then Bob gets 1S. A very similar thing happens if Bob
broadcasts transaction 2.

(d) Bob picks this option when he is planning on keeping the channel open for more
future transactions, and isnt ready to broadcast the channel state to miners yet.
We expect this feature to be important because of the importance of high fre-
quency transactions for the Lightning Network. Lets say that Bob picks Trans-
action 1 (betting that len(X) = 21). The transaction must be resolved before it is
broadcasted, because otherwise the channel funds between Alice and Bob may be
depleted without them realizing. Because of that, Bob must be forced to commit
to a transaction when he decides. When he sends a signature of the fully signed
Transaction 1 to Alice, he also sends her Y;. If he decides to broadcast Transac-
tion 2, he wont be able to get any money because Alice can sign that transac-
tion with her knowledge of Y;. With this commitment scheme, they are able to
continue making un-broadcasted transactions until they close the channel.

This schema can be extended to accommodate probabilities even smaller than 1/2.
In general, for 1/n, Alice can transmit n different transactions, each with different possi-
bility for the length of X. Bob would generate Y1, ...,Y,. When Bob commits to Transac-
tion i, he sends {Y}} j+; to Alice. For increasingly large n, however, this schema becomes
increasingly complex and inefficient.

5. Implementation
5.1. Existing Code

The code for Lightning Network is written entirely in Go. Users can fund payment chan-
nels and create transactions on the Testnet using a client in the terminal. The terminal is
a Bash-like interface with commands like kelp and Is. Users can type Is (Figure 5) to see
a summary of their wallet, including connected peers, channel history, past transactions,
addresses, and account balance.

There are two ways to send money to a peer through the Lightning network. The first
is the same as how a user would send Bitcoin through the regular Bitcoin network. The
receiver generates a new address (tb1lq...) for one-time use and gives it to the sender. In
this client, the sender can enter ”send tb1lq... [amount]”. The transaction is broadcasted
and after a few minutes, a miner adds a block to the public ledger and confirms the
transaction. A disadvantage to this method is that it may take a while for funds to become
available for use.

The other method, unique to the Lightning Network, is to open a payment channel,
say, between Alice and Bob. Alice has to know Bob’s public key (In...), and can connect
to Bob using “con In...:[port]”. Note that unlike the random tb1q addresses, this connec-
tion is using the identifiable public key. Under peers, Alice can find the ID of her con-
nection with Bob, and fund a channel using ’fund [ID] [capacity] [initialSend]”. Alice
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Figure 5. A screen capture of a sample Lightning client. Users can type 1s” to view a summary of their wallet,
past transactions, connections, and channel statuses.

and Bob can use this payment channel to exchange money back and forth using “push
[channellD] [amount]” for immediate use. Only when they close the channel are the final
amounts broadcasted and added to the public ledger.

5.2. Probabilistic Payment Implementation

We extended Lightning’s API so that we could make probabilistic payments in the chan-
nel using “push [channellD] [amount] [odds]”. The command probabilistically pushes
the given amount (in satoshis) to the other party on the given channel with probability
1 /odds. The code written for this implementation can be found in the Appendix.

6. Vulnerabilities

As the Lightning Network is still under development, there are still many bugs in both
the implementation and theory of the system.

6.1. Implementation Vulnerabilities

1. Address Format: Bitcoin and its variants use Base58Check encoding to generate
addresses for receiving payments. The encoding process involves hashes, check-



sums, and appending an address prefix unique to the relevant blockchain-based
currency. Testnet coin uses the prefix ”tb1q”, but due to a bug in the code, the
encoding process only appended ’tb1.” Since the addresses were incorrectly for-
matted, all the transactions sent to these addresses were rejected by Testnet, and
the associated money disappeared. This vulnerability would not be easily identi-
fied by inexperienced users. While the prefix has since been fixed, the root of the
problem could be even better remedied if Lightning implemented a verification
system for address formats before broadcasting transactions to the Testnet.

2. Network Issues: Creating a payment channel required establishing a connection
to another Lightning node with a static IP address. The Lightning repository cur-
rently only supports Windows and Linux, so many of us had to run the code on
a virtual machine. The process of configuring static IPs on virtual machines is
rather complicated, and limited us from using some of Lightning’s features. Ac-
quiring a static IP on MIT’s campus also requires either using a wired connection
or going through a complicated approval process with IS&T [8]]. This is more of
a usability issue than a vulnerability.

6.2. Theoretical Vulnerabilities

1. Exhausted Channels: Consider a payment channel between Alice and Bob. An
exhausted channel is when one party, say Alice, has completely run out of funds.
Normally, the only thing incentivizing a party not to publish an old channel state
is if the other party catches them, they can utilize the breach remedy condition
and cause the guilty party to lose all the money in the channel. In this case, since
Alice has nothing to lose, nothing is stopping her from publishing an old state
in which she has more money. If Bob does not notice this in time, he will only
get the money from the old channel state. Currently, the only way to prevent this
attack is by making sure channels are never exahusted.

2. Segregated Witness: The SegWit soft-fork introduces fixes to transaction mal-
leability and increases Bitcoin’s block size limit. SegWit is set to activate as
soon as it reaches 95% support, but it is currently hovering at around 33% due
to mostly ideological opposition [7]. By solving malleability, SegWit allows the
wide scalability of second-layer Bitcoin networks like Lightning. Otherwise, ev-
ery Lightning client would have to run a full node in order to be completely
trusted.

3. Anonymity: Lightning requires a party to open payment channels using the other
party’s identifiable public key. This is the same public key used to send messages
through the terminal interface. Unlike addresses, public keys are not one-time
use and cannot be infinitely-generated.

7. Conclusion

As the first decentralized digital currency, Bitcoin’s very existence changes the way we
think about money and economy. Bitcoin has been enjoying rapid growth since it was
released in 2009. But now that same growth is causing it to struggle to accommodate
today’s number of users and different kinds of transactions that it was not originally in-



tended for. Bitcoin Lightning is an attempt to remedy that, with a system that accommo-
dates more high-frequency and low-value transactions and reduces the load on Bitcoin
Servers.

In this paper, we evaluated the Bitcoin Lightning system, with a special emphasis
on security. We found implementation bugs and system flaws, such as a lack of incentive
against broadcasting past states when the payment channel has been exhausted. Another
flaw in the system is the lack of total anonymity, because activity is tied to a public key.
This also reflects the lack of total anonymity in the Bitcoin system.

The main focus of our project was to evaluate the possibility of, and implement, a
probabilistic payment system to Bitcoin Lightning. Probabilistic payment would extend
the focus of Lightning to not only allow high-frequency low-value payments, but also
true microtransactions with values of less than a Satoshi. We implemented a rudimentary
version of it that allows two people to carry out a probabilistic payment within a Light-
ning channel using the protocol described in section 4] One of our next steps include
fixing errors coming from deadlocking, and implementing all of the security checks that
our protocol relies upon to be safe.

Bitcoin Lightning is still a very new addition to Bitcoin, having been published
around a year and a half ago. It hasn’t been incorporated into the main infrastructure
yet, with one major reason being that many of the features have not been ironed out yet.
We believe the system has the potential to bring Bitcoin to a higher level of scalability
and usability as it needs it right now. Furthermore, if Lightning incorporates probabilistic
payment, it could change the environment around micropayments and make possible a
new class of transactions.
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Appendix

The code written for this project can be accessed here: https://github.com/jbloxham/lit.
The full repository for the Bitcoin Lightning network can be accessed here:
https://github.com/mit-dci/lit.
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