DappGuard : Active Monitoring and Defense for Solidity Smart Contracts

Thomas Cook
tomcook@mit.edu

Abstract

Ethereum’s smart contracts present an attractive in-
centive toward participating in the network. De-
ploying a smart contract allows a user to run a
distributed application (Dapp) that includes stor-
age, payment features, and cryptographic services
all within the context of just a contract script and
its layout. However, recently exploited vulnerabili-
ties in the Solidity smart contract language have un-
dermined the integrity of Ethereum’s smart contract
implementations. After some discussion of previ-
ous work, we examine whether known vulnerabil-
ities can be detected as attacks post factum from
information available on the Ethereum blockchain.
Then, we present findings on what information is
available for a few selected contracts. Finally, we
propose our design for a live monitoring and pro-
tection system based on our research findings, the
prototypes we developed to gather data, and docu-
mented plans for extension.

1 Introduction

Emerging blockchain technologies have shown
great promise in offering decentralized services
backed by a distributed ledger. This has espe-
cially proven true with the deployment of various
cryptocurrencies, the most prominent being Bitcoin,
Ripple, and Ethereum, all with market capitaliza-
tion (as of writing) of over $USD 5 billion. The
Ethereum blockchain is current the most popular
cryptocurrency that utilizes the smart contract ab-
straction layer to log transactions.

Alex Latham
alatham @mit.edu

Jae Hyung Lee
Jjaehyung @mit.edu

1.1 Smart Contracts and Dapps

Smart contracts allow accounts on the Ethereum
network to host, on the blockchain, a 'near’ Turing-
complete program that supports publicly verifiable
transactions. It can facilitate the exchange of
money, content, property, shares, or anything of
value. When run on the blockchain a smart con-
tract becomes like a self-operating program that au-
tomatically executes when specific conditions are
met. Because smart contracts run on the blockchain,
they run exactly as programmed without any possi-
bility of censorship, downtime, fraud or third party
interference. [2]

A majority of smart contracts rely on a traditional
web app front end to provide the user interface for
that contract’s functions. A function is invoked,
when a user of the Dapp sends a transaction using
his/her account address to the contracts address. For
the most part, the functions current smart contracts
provide can be categorized as one of financial, no-
tary, library, gaming, or that of a wallet. [6]

1.2 Solidity, Ethereum Virtual Machine,
and Ethereum Networks

Solidity is a imperatively typed programming lan-
guage, similar to Javascript, for writing smart
contracts. Solidity smart contracts are compiled
to EVM bytecode before being deployed on the
blockchain.

Ethereum smart contracts are run on the
Ethereum Virtual Machine, which is isolated from
any miner or contract owner’s local machine, and
nodes on the EVM executed smart contracts—

code that executes conditioned transactions between
users and other contracts. Contracts can store value,
transfer and receive value, and execute code. The
execution of transactions with these contracts is per-
formed by nodes on the EVM in a publicly visible
way, and paid for in units of gas.

The amount of gas allocated for a given trans-
action’s execution is finite and fixed by the creator
of the transaction. The gas cost for each EVM in-
struction is provided in [12] and roughly correlates
to the computational cost of each instruction mak-
ing exceptions where other system goals are consid-
ered. For example, arithmetic operations are very
cheap while storage is among the most expensive
operations so that the blockchain does not grow too
quickly.

A smart contract’s transaction is executed when
it is mined into a block. Miners receive a static re-
ward, as well as the value of any gas used times
the gas price (set by the market and having units
ether/gas) when they successfully solve a proof-of-
work puzzle and submit a block to the blockchain.

1.3 TheDAO Incident

A DAO is fully autonomous, decentralized organi-
zation with no single leader. It is designed to re-
place the rules and structure of a traditional orga-
nization, eliminating the need for people and cen-
tralized control. “TheDAO” is one kind of DAO
initiated and developed by German startup Slock.it.
“TheDAQO” was launched in April 2016 became as
one of the most popular smart contracts since the
Ethereum blockchain started running. However,
several Ethereum developers raised questions and
concerns about its potential vulnerability within its
recursive call of splitDAO function which is used
for person who want to leave “theDAQO” contract.
In mid of June 2016, one of “theDAQO” creator an-
nounced that the “recursive call bug” had been ad-
dressed and no “theDAO” contracts and funds were
at risk. [1]

However, 3 days later after the announcement,
unkown attacker could drain more then 3.6 mil-
lion ethers by utilizing bug in the recursive spilit-
DAO function. The Ethereum development team
did attempt to split “theDAQO” contract to prevent
more ether from being taken, but the attempt did

not work since they could not get the votes neces-
sary in such a short time. In characteristic of smart
contract, developers and designers didn’t consider
such an attack or malicious usage condition within
“theDAO”. [4]

1.4 Testing Methodology

The contribution of this paper is twofold. Motivated
by existing security analyses of smart contracts in
Ethereum, we first demonstrate that there is indeed
opportunity to infer attacks from blockchain meta-
data. Second, we describe and propose future di-
rections for our prototype of DappGuard. Addtion-
ally, we conclude with general discussion of smart
contract security as it relates to the Dapp and smart
contract environment.

2 Background and Related Work

The Solidity language does not introduce constructs
to deal with domain-specific aspects since its com-
putation steps are recorded on a public blockchain.
Hence, Ethereum developers had focused on cor-
rectness of its execution to avoid manipulation and
tamper of adversary. However, in last couple of
years it has been proven that correctness of the ex-
ecution cannot guarantee security of the smart con-
tract not only from reordered. several security vul-
nerabilities in Ethereum smart contracts have been
discovered both by hands-on development experi-
ence. [5]

2.1 Security Issues

Most notably, a taxonomy of vulnerabilities and re-
lated attacks against Solidity, the EVM, and the
blockchain were recently described by Atzei, Bar-
toletti, and Cimoli [5]. They defined 12 vulnera-
bilities among these components that pose risks to
the contract owners. We utilize this vocabulary in
our analyses and thus, we provide the list and brief
descriptions for clarity and convenience.

1. Call to the unknown: This refers to any use of
call, delegatecall, send, or direct call to
another contract that results results in execu-
tion of an unknown, possibly malicious, fall-

back function (the anonymous function on ev-
ery smart contract invoked as a catch all).

. Gasless send: If the callee of a send (the
Ethereum function to transfer ether) is a con-
tract with a relatively expensive fallback func-
tion, then the amount of gas the caller is limited
to— 2300 units for sending ether to an address—
will be insufficient, and an out-of-gas excep-
tion will be thrown.

. Exception disorder: refers to unchecked
send errors or called contracts that throw ex-
ceptions. The effect is that the calling contract
transaction is entirely reverted and all gas is
lost.

. Type casts: if the arguments to a direct call
from one contract to a function of another con-
tract is incorrectly typed, or the address of the
called contract is incorrect, either nothing will
happen, or the wrong code will execute. In nei-
ther case is an exception thrown, and the caller
is not made aware.

. Reentrancy: In some cases, a contract’s fall-
back function allows it to re-enter a caller func-
tion before it has terminated. This can result
in the repeated execution of functions intended
only to be executed once per transaction.

. Keeping secrets: by the public nature of the
blockchain, contract fields marked private
are not guaranteed to remain secret- to set a
private field, a contract owner must broadcast
a transaction. Cryptographic protocols are re-
quired to guarantee that fields are not visible to
anyone mining or inspecting the blockchain.

. Immutability: when a contract is added to the
blockchain, there is no way to edit it. If a con-
tract is found to be defective, there is often
nothing to be done short of killing the contract
(assuming measures were taken by the contract
creator to make this possible).

. Ether lost in transfer: If ether is sent to an
“orphan” address that doesn’t actually belong
to any user or contract, that ether will be lost
and cannot be retrieved.

9. Transaction Ordering Dependence (TOD) :
This occurs when the assumed state of the
blockchain is not the blockchain’s actual state
when a transaction is executed. The order in
which transactions are mined can have adverse
effects on the execution of any given transac-
tion. This bug is said to be present in up to
%15.8 of all contracts on the blockchain!.

10. Stack size limit: a transaction’s call stack
grows with each contract invocation, and once
the stack is 1,024 frames tall, an exception is
thrown. Changes to gas rules and certian in-
struction costs have resolved this vulnerability
in the current enviromnent.

11. Generating Randomness: many contracts
that require random numbers use the hash of
transactions yet-to-appear in the blockchain. A
malicious miner could arrange their block to
influence the outcome of this random number
generation.

12. Timestamp dependence: some Dapps use
timestamps to generate random numbers.
However, the clock in Ethereum is set by the
local clocks of its miners. So, such Dapps can
be influenced with slight adjustments to min-
ers’ reported times.

Additionally, there have been at least 20 reported
types of integer orverflow/underflow vulnerabilities.
Finally, the solidity documentation maintatins a list
of known bugs by version.

2.2 Static Analysis

It was demonstrated that many contracts are likely
vulnerable to exception disorder in the form of
unchecked ’send’ instructions [3]. Further, the
evmdis [10] tool performs disassembly of contract
bytecode and JUMP target analysis.

2.3 Symbolic Execution: Oyente [11]

Luu and colleagues developed the Oyente symbolic
execution system with the security goals of mit-

Uhttps://medium.com/@hrishiolickel/why-smart-contracts-
fail-undiscovered-bugs-and-what-we-can-do-about-them-
119222843007

igating TOD, exception disorder, and timestamp
dependence bugs for contract owners in the pre-
deployment stage and users in the pre-transaction
stage. Oyente is able to, given the Ethereum global
state and a contract’s bytecode, whether the con-
tract’s execution has feasible paths to the bug and
with what input and path constraints. Oyente’s de-
sign also utilizes a black box validator to identify
and remove false positives.

2.4 Formal Verification

Smart contract security has seen some progress via
formally verified proofs about certain contract prop-
erties. For example, Bhargavan and showed that by
decompiling certain Solidity contracts to F*, bounds
can be proven on the gas consumed by a call invo-
cation. [7]. The most prominent shortcoming cur-
rently is that the system used to translate the Solidity
code does not support all Solidity features.

2.5 Best practices

Best practices for writing safe smart contracts are
scattered across the Ethereum community. [9, 8].
Many of these are guidelines for engineering secure
mechanisms into smart contracts such as fail-safe
modes, circuit breakers, and assert guards. These
mechanisms have been studied in other contexts,
and we adopt some of them into our design where
applicable. Other best practices actually eliminate
many vulnerabilities. Additionally, these best prac-
tices have become Ethereum Improvement Propos-
als, which introduce lasting changes to the environ-
ment. EIP 150, one notable example, essentially
solved the stack size limit bug. For example, using
name resolution for called contracts (which is pro-
vided by some library smart contracts). Further, us-
ing blocknumber over timestamp avoids any miner
attacks on timestamp dependence. Finally, timed
commitments are one way to overcome the keeping
secrets bug. [5]

3 Our Contribution

Our work consisted of two phases. First, an inves-
tigation of what information about smart contract
transactions exists on the Ethereum blockchain, if

this information is enough to identify potentially
malicious transactions, and finally, if these mark-
ers provide reason to think that common vulnera-
bilities are actually being exploited in selected live
contracts. Our findings motivate the second compo-
nent, DappGuard, a system for live smart contract
monitoring.

3.1 Searching for attack fingerprints

For each common vulnerability we identified, we
first considered what the visible effects of an exploit
of that vulnerability might be. The codification of
these side-channel effects informed our subsequent
analysis of the live contracts.

Keeping Secrets, TOD This vulnerability is com-
mon in ‘random’ gambling-based contracts, as users
might be able to influence the outcome of a con-
tract’s execution by broadcasting a large number of
transactions immediately preceding the execution.
Here, we would expect to see a burst of activity from
a given user in a short period of time, which, within
a given period, could present as higher-than-average
gas costs, or as larger bets, given the influenced
outcome (which might mean a higher-than-average
transaction value when they place their bet).

Reentrancy Reentrancy will result in multiple
calls to a contract’s fallback function, which may
be easily visible in the offending transaction’s log.
Here especially, abnormally high gas usage could be
a symptom of an attack. Comparing a normal trans-
action to a malicious transaction exploiting reen-
trancy on our SimpleDAO contract, the amount of
gas used in the malicious transaction was directly
proportional to the number of reentrancies that con-
tract was able to make.

Gasless send, call to the unknown These are
most often caused by mistakes in writing either
transactions or contracts, rather than exploitable
vulnerabilities, but they can result in unexpected
consequences (i.e. the seemingly unpredictable ex-
ecution of the recipient contract’s fallback func-
tion). It is not likely that gasless sends are inten-
tionally provoked by a malicious user, because a

contract would likely stand to gain more value in
ether than the gas wasted by a calling address who
would get an out of gas exception. Likewise, calls
to the unknown are likely mistakes rather than the
result of malicious activity, and tools provided by
many Ethereum wallets as well as Dapps like the
Ethereum Name Service can help prevent erroneous
sends.

Integer overflow/underflow Atzei, Bartoletti,
and Cimoli identified a second possible of attack
on the DAO contract that relies on an integer un-
derflow to allow a malicious contract to withdraw
more ether than it deposited. This is a more sub-
tle vulnerability than reentrancy, as it only involves
two calls to the malicious contract’s fallback, mak-
ing the attack less obvious and less likely to result
in an out-of-gas exception. However, we still expect
such an exploit to consume more gas than a normal
call, and we might also be able to detect the two fall-
back invocations in the affected transaction’s log.

Exception disorders Exceptions in Solidity are
handled inconsistently, with behavior depending on
how the inciting call was made. This means that
the identification of non-exception side-channel ef-
fects of exploits (and exceptions, in any case, aren’t
always a result of certain exploits) is especially im-
portant in identifying exploits that intentionally or
unintentionally take advantage of Solidity’s confus-
ing exception handling model.

3.2 Testing Methodology

What is likely common between the effects of ex-
ploits on common smart contract vulnerabilities are
high gas usage, strange message values (especially
in transactions on ‘random’ gambling contracts),
and suspicious fallback invocations that might be
visible in a transaction’s log. We are interested in
the prevalence and detectabbility of these effects in
real contracts.

3.2.1 SimpleDAO

To test the likelihood of a given contract being sub-
ject to malicious behavior, we first deployed a smart
contract modeling the DAO contract and attempted

to replay the attack against the DAO (an instance
of reentrancy). After depositing (test) ether into the
contract, called SimpleDAO, on behalf of multiple
other contracts, our malicious contract was able to
withdraw more ether than was deposited on its be-
half. Once we initiated the reentrancy with a call
to the malicious contract’s fallback (which occurs
any time ether is transferred to a contract), the con-
tract was able to perform two withdrals of one ether
each (after depositing only one) before running out
of gas.

That our example exploit was successful, and re-
quired extremely simple techniques on behalf of the
malicious party, we expect that the same vulnerabil-
ity that affected the DAO is still possible and imple-
mentable (especially given that many contracts pub-
lish their source code publicly). Without attention to
the transaction receipts, or if a contract has a partic-
ularly large gas allocation, such an attack might go
unnoticed, especially on high-value contracts with
many transactions. The feasibility of this exploit,
and the ease with which it might go undiscovered
in less-dramatic instances than of the DAO, is evi-
dence that the attacks we identified are very possible
to execute.

3.3 Live Contract Analysis

Seeing that a common smart contract exploit was
feasible, and could potentially be detected via aber-
rant gas usage or message values, we analyzed
the transaction receipts for several gambling-based
Dapps.

3.3.1 Transaction Receipts

For each of the Dapps EthereumLottery, Etheroll,
HonestDice, and Rouleth (versions 3.5 and 4.8), we
retrieved transaction receipts for up to 10,000 trans-
actions on the contract. Each transaction receipt is
of the following form:

"blockNumber":"3702663",
"timeStamp":"1494720276",
"hash":"0Ox662aca...",
llnoncell . H4OI| s
"blockHash":"0x64b...",

"transactionIndex":"12",
"from":"Oxa4fc86...",
"to":"0x9473bc8b...",
"value":"200000",
"gas":"303587",
"gasPrice":"10000000000",
"isError":"0",
"input":"0x727b1...",
"contractAddress":"",
"cumulativeGasUsed":"752879",
"gasUsed":"203587",
"confirmations":"3612"

Transaction receipts only refer to transactions
that have been successfully added to the blockchain,
so blockNumber refers to the block where the
transaction was mined (and timeStamp the time it
was mined). The hash is the transaction’s iden-
tifier. Nonce is a hash of the proof of work re-
quired of the miner who mined the block containing
this transaction, and the transaction’s index refers
to its position relative to other transactions on the
block. The number of miners who agree on this
transaction’s outcome is given in confirmations.
ContractAddress is empty for all transactions that
do not create a contract (for transactions where the
contract of interest is called by another user or con-
tract, the to field will be the address of the contract
of interest).

For the purposes of our analysis, we are interested
in the following fields:

e from: This is the address of the calling con-
tract or user. The large number of transactions
for some contracts means we might identify
patterns in certain users’ behavior.

e isError: This flag is set to 1 when an ex-
ception occurred during the execution of the
transaction. Exceptions are reasonably com-
mon (and can be the result of a simple mis-
take in writing contracts or transactions), but if
specific users generate many exceptions when
interacting with a given contract, we might be
suspicious.

e gasUsed: This measures (in units of gas) the
amount of gas consumed during the transac-
tion’s execution. Many exploits come with the

side effect of using more gas than we might
expect, and so we can check for suspiciously
high gas usage among users. Again, gas usage
can be variable and doesn’t necessarily indi-
cate wrongdoing, but consistently high gas us-
age from a single user might be a sign of an
attacker.

e value: We are examining gambling contracts,
and so the value (in wei, which is equivalent to
10~'8 ether) often represents a bet. A spike in
message value might represent a suspiciously
high bet, perhaps indicating that the user has
more confidence than others about the outcome
of the gamble.

Given this information, we gathered the follow-
ing data for each contract tested:

e For each user, the number of transactions that
resulted in exceptions.

e For each user, the amount of ether transmitted
and gas per transaction (and the respective av-
erages per user).

e The total amount of gas spent on the contract’s
transactions, the total value transferred, and the
total number of transactions considered.

e The average and standard deviation of gas us-
age over all of the contract’s transactions, and
the average and standard deviation of value
over all of the contract’s transactions.

e For each user and each transaction, the number
of standard deviations away from the contract
average for gas and value the transaction’s gas
usage and value lie.

e The number of users who had transactions
where gas expenditure fell outside two stan-
dard deviations of the contract’s average.

Of course, evaluating value and gas usage across
users is less illustrative if gas expenditure and mes-
sage values seem random. However, as we would
expect, in the contracts we tested gas usage tends to
peak around certain values (presumably, functions
in the called contract expend reasonably consistent
amounts of gas per call), and values seem similarly

clustered. The standard deviation calculations as-
sumed a roughly normal distribution for gas and
value, but this assumption was likely inappropri-
ate for some of the contracts. More refined outlier
detection would be necessary to evaluate contracts
with more complicated distributions.

3.3.2 Observations

From this analysis, we noticed the following?. First,
we observed several users with high proportions of
erroneous transactions— one user of Rouleth3.5 (the
largest contract we tested by number of transac-
tions) had a total of eight transactions with the con-
tract, seven of which resulted in exceptions. We also
saw a number of users who had at least one transac-
tion with gas usage more than two standard devia-
tions above the contract’s average (for Rouleth3.5,
92 such unique addresses were identified from the
most recent 10,000 transactions).

Second, we found instances of contracts with
well-grouped distributions of average gas use and
value transferred per user. Histograms of average
gas usage per user reveal that some contracts admit
to normal-looking distributions of average user gas
expenditure per transaction. Pictured is such a his-
togram for Rouleth3.5, where we can clearly see a
number of users that, on average, used significantly
more gas than most— but, according to the amount
of gas allowed, did not, on average, run out of gas.
This result is of considerable interest- instances of
gas usages that are much higher than average could
definitely be suspect— but, because the gas used was
still within the amount allocated, it caused no visible
effects. Of course, there are legitimate reasons why
a transaction might use a lot of gas, but this is to
show that malicious executions that will definitely
use excess gas can be identified.

An example of a histogram of average user value
per transaction is shown for Etheroll. Here, we see
that a large proportion of transactions transferred
a small amount of Ether, but a handful transferred

2 All transactions initiated by the contract creator were omit-
ted from this analysis. Contract creators might call a host of
functions on their own contract that do not represent standard
use of the contract, and the contract owners often make a large
number of transactions that would likely have skewed our anal-
ysis.

much more— on the order of ten-times more, in some
cases. Again, a high value transfer is not certainly
suspect, but this is to show that outliers, at least for
some contracts, can be identified.

160Rouleth3.5: histogram of average gas per user per transaction

1401

1201

=
o
S}

Number of users
o]
o

40 4

204 ‘
0 ,-_-‘_ [| |l 1 |
200000 400000 600000 800000
Amount of gas spent (max allowed = 3501254)

1000000

80Etheroll: histogram of average value per user per transaction

70
60
50
40
30
20
10
0 | R =
0.0 0.2 0.4 0.6

0.8 1.0 1.2 1.4
Average value per transaction (in 10°7 wei) lel2

Number of users

4 Proposed Design

4.1 Threat Model

DappGuard assumes that an attacker holds at least
one Ethereum account and may or may not also be
a miner. We also assume the contract creator fol-
lows best practices and deploys formally verified
contract.

4.2 System and Goals

In order to collect data from the blockchain, one
needs to run a blockchain node with one of the avail-
able clients. The most popular clients for Ethereum
are geth written in Go and parity written in Rust.
These clients have managment APIs that allow ex-

ecution tracing and In our experimentation, to de-
ploy test contracts without needing to spend real
monetary value holding ether, we used a testnet and
experimented implemnting a fail-safe by sending
transactions to our contract. As a result, we present
a design for DappGuard.

The goals of DappGuard are relatively simple:

1. Classify known attacks from transaction data
2. Protect smart contracts from known attacks

3. Determine malicious actors and learn new at-
tacks

To accomplish these goals, DappGuard’s archi-
tecture relies on the following components:

e EthWorldModel (EWM)

ContractModel
AddressModel
MinerModel
Rules

e Blockchain Monitor Nodes (BMN)

— Mainnet node

— Private testnet Clone node

e TransactionRiskAnalyzer (TRA)

Oyente Validator

Transaction Foretrace

Anomaly Analysis + Rules Engine

Responder

The EWM stores information about transaction
histories for the contract, for users who have in-
teracted with the contract, and metadata associated
with the blocks containing each transaction. The
ContractModel stores statistics relevant to the clas-
sification of any new transactions— such as distribu-
tions of gas usage and value transferred from past
transactions and the number of transactions on the
contract (in total, and from particular users). These
models will resemble a refined version of our live
contract analysis (Sec. 3.3).

The AddressModel represents each address’s in-
teraction with the contract— amount of value trans-
ferred, average gas usage, and the number of excep-
tions among its transactions with the contract.

The MinerModel serves to relate transactions on
the contract wiht the details of the blocks and min-
ers responsible for adding them to the blockchain.
Such information as who mined a block contain-
ing a transaction on the contract, the order of trans-
actions on that block, associated with information
from the AddressModel for the source of the trans-
action.

The Rules Engine works to apply each model to
new transactions to inform judgments about the va-
lidity of the transaction, and updates each model to
strengthen the identification of standard and mali-
cious transactions and mining patterns.

The BMNs serve to keep an up-to-date version
of the blockchain available (the Mainnet node), and
to test the execution of pending transactions on our
contract (the Testnet node). These nodes are each
Ethereum nodes on the main network and a test net-
work (such as Ropsten or Kovan) respectively. The
Mainnet node’s job is to remain synced with the
main blockchain. The job of the Testnet node is to
trace the possible states for all orderings of transac-
tions on our contract that are pending on the main
network.

To identify security risks associated with TOD,
exception disorders, and timestamp dependencies,
we validate pending transactions against the results
of the Oyente symbolic execution system. This val-
idator uses the results of running Oyente on our con-
tract, in the form of constraints on function inputs
that produce bugs of these kinds, to determine the
validity of the transaction’s execution. Security is-
sues outside the scope of this validator will be ad-
dressed by either the Testnet simulation or applica-
tion of our Rules Engine.

Finally, the Responder module reacts to danger-
ous transactions as determined by the contract. This
might send a notification to the contract owner (as a
logged event on the Testnet node), or initiate a take-
down of the contract, or kick off a transaction gen-
erated by the user that changes the contract’s state
to prevent an imminent transaction from exploiting
a security hole.

4.3 Modes of Operation
4.3.1 Knowledge Acquisition

This mode refers to DappGuard initially populating,
maintaining, and optimizing its EthWorldModel for
efficient transaction analysis. This would include
gathering a complete blockchain transaction history
and analysis, and updates to any known vulnera-
bilities or risk indicators used by the Rules En-
gine. Any post-mordem analysis of missed attacks
would be one example. Finally, any information ex-
change with client smart contract owners that results
in changes to the EWM would fall under knowledge
acquisition for DappGuard.

4.3.2 Active Monitoring & Detection

For any client smart contracts that DappGuard man-
ages, it actively monitors the incoming transactions.
For all incoming transactions to the contract of in-
terest, we the use the saved result of Oyente excu-
tion for the contract to determine quickly whether
the contract will experience a TOD, exception dis-
order, or timestamp dependence bug. Then, for re-
maining potential vulnerabilities, the contract exe-
cution is simulated on the private testnet and any
attacks on that execution are detected using the
Anomaly Analysis and Rules Engine. Finally, if a
threat is detected that will possibly transpire, Dapp-
Guard will send a transaction, that with high proba-
bility, gets mined before the risky transaction.

5 Suggestions for Future work

As to future work, we mention directions we con-
sidered before finalizing our decision. Although So-
lidity was the only smart contract language we con-
sidered, others too have emerged such as the func-
tionally typed Bamboo, which hopes to mitigate im-
mutability bugs. Additionally, we considered that
because Dapps have traditional web front ends, that
they could be vulnerable, too, to traditional web ex-
ploits. The last attack vector we considered was that
of padding in the Ethereum Virtual Machine and
malleability of transactions. This is protected cur-
rently, so long as the keccak256 hash of the data is
verified and that keccak256 remains secure.

6 Discussion

Obviously, the current incarnation of DappGuard is
little more than proof-of-concept based on our de-
veloped tools. However, we believe that our re-
search shows that blockchain data and knowledge
of smart contract attack mechanics can be used to
detect attacks as they occur. Further, we believe by
providing this design, we both motivate active and
adaptive security in the Ethereum ecosystem and
identify strong candidates for tools a system of this
nature would rely on.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

Ethereum Hack dao hack simplified.
http://blog.erratasec.com/2016/06/
etheriumdao-hack-similfied.html. Accessed:
2016-06-18.

Ethereum what is ethereum for beginners. https://
blockgeeks.com/guides/what-is-ethereum. Ac-
cessed: 2012-01-30.

Hacking, Distributed: Scanning live Ethereum con-
tracts for the “unchecked-send” bug, author= Wen,
Zikai Alex and Miller, Andrew, year = 2016, howpub-
lished = ://hackingdistributed.com/2016/06/16/scanning-
live-ethereum-contracts-for-bugs/.

thedao hack faq. https://ethereunm.
stackexchange.com/questions/6183/

Code

All code relevant to this project can be found in
the following repository: https://github.com/
cookt/857final

thedao-hack-fag-how-did-the-attack-happen-on-17-june-2016.

Accessed: 2016-06-17.

ATZEIL, N., BARTOLETTI, M., AND CIMOLI, T. A sur-
vey of attacks on ethereum smart contracts. Tech. rep.

BARTOLETTI, M., AND POMPIANU, L. An empirical
analysis of smart contracts: platforms, applications, and
design patterns. CoRR abs/1703.06322 (2017).

BHARGAVAN, K., DELIGNAT-LAVAUD, A., FOURNET,
C., GOLLAMUDI, A., GONTHIER, G., KOBEISSI, N.,
KurLatova, N., RASTOGI, A., SIBUT-PINOTE, T.,
SWAMY, N., AND ZANELLA-BEGUELIN, S. Formal ver-
ification of smart contracts: Short paper. In Proceedings
of the 2016 ACM Workshop on Programming Languages
and Analysis for Security (New York, NY, USA, 2016),
PLAS ’16, ACM, pp. 91-96.

CONSENSYS. Smart contract best prac-
tices. https://github.com/ConsenSys/
smart-contract-best-practices#
eng-techniques, 2017.

ETHEREUM. Security considerations. http:
//solidity.readthedocs.io/en/develop/
security-considerations.html, 2015-2017.

JOHNSON, N. evmdis. https://github.com/
Arachnid/evmdis, 2016-2017.

Luu, L., CHU, D.-H., OLICKEL, H., SAXENA, P.,
AND HOBOR, A. Making smart contracts smarter. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (New York, NY,
USA, 2016), CCS *16, ACM, pp. 254-269.

WooD, G. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum Project Yellow Paper 151
(2014).

10

Appendix of Live Contract Gas and Value

1é—lonestDice: histogram of average gas per user per transaction

.
Histograms
16
14
0 12
Q
n
210
o
[
2 8
€
E
6
4
. . 2
60Rouleth3.5: histogram of average gas per user per transaction
0
40000 60000 80000 100000
140 I Amount of gas spent (max allowed = 1000000)
120
I Rouleth3.5: histogram of average value per user per transaction
0
§ 100 I
=]
k]
5 80 200
Q
£
2 60 .
0
40 g 190
=]
' “6
20 @
Q
£ 100
0 | . 1 [. g
200000 400000 600000 800000 1000000
Amount of gas spent (max allowed = 3501254)
50
10Rouleth4.8: histogram of average gas per user per transaction
0 -_-_-J‘__-__ '
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Average value per transaction (in 10°7 wei) lel3
8
3Roouleth4.8: histogram of average value per user per transaction
0
& 6
=]
s
5 25
Q
E o
=2
0 20
[
3
24 b
215
[
Qo
£
=]
0 T = 10
60000 80000 100000 120000 140000 160000 180000 200000
Amount of gas spent (max allowed = 4000000)
5
Etheroll: histogram of average gas per user per transaction
° 0 . a
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
50 Average value per transaction (in 10~7 wei) lel2
n 40 I
0)
(%)
=]
2 30
[
Q
£
E
204
10 (—
0
160000 180000 200000 220000 240000

Amount of gas spent (max allowed = 3243380)

11

Number of users

Number of users

80Etherol[: histogram of average value per user per transaction

70

60

50

40

30

20

10

il

0 - —

0.0 0.2 0.4 0.6

Average value per transaction (in 107 wei)

HonestDice: histogram of average value per user per transaction

0.8

1.0

1.2

14

lel2

25

20

0.0 0.5 1.0 1.5
Average value per transaction

2.0

2.5

3.0

3.5

4.0
lell

12

