
Investigation of Practical Attacks on the
Argon2i Memory-hard Hash Function
6.857 Computer and Network Security
Massachusetts Institute of Technology

Mitchell Gu
Ryan Berg

Casie Chen
May 18, 2017

Contents

1 Introduction 2

2 Project Statement 2

3 Literature Review 3

4 Background 4
4.1 The Argon2 Hash . 4

4.1.1 The Compression Function H 5
4.1.2 Indexing . 6
4.1.3 Revisions Made to Argon2i-A 6
4.1.4 Simplifying Assumptions . 6

4.2 The Alwen-Blocki Attack . 7
4.2.1 Modeling the Hash as a DAG 7
4.2.2 Attacking the Graph’s Depth-Robustness 7
4.2.3 Light and Balloon Phases of Computation 8
4.2.4 Parallelization and Amortization 8
4.2.5 Simulation Results . 9

5 Our Contributions 9
5.1 Modeling the Attack . 9
5.2 Genetic Algorithm Minimization of Depth-Reducing Set S 10
5.3 Additional Layer of Parallelization to Amortize Memory Costs . . 14
5.4 Predetermining Actual Reduced Graph Depth 14

6 Further Research Questions 14

7 Conclusion 15

8 Acknowledgements 15

9 References 15

10 Appendix 16

Final Project 6.857 Computer and Network Security

Mitchell Gu
Ryan Berg

Casie Chen

1 Introduction

Modern password hashing functions are designed to protect low-entropy pass-
words such as ”password” or ”123456Seven” that can be brute-forced quickly.
These hashing techniques have evolved over time as attacks on them have been
developed. When plain hashing of passwords became compromised through pre-
computing hashes of common passwords and saving them in rainbow tables, the
standard became salted hashing. As brute forcing salted hashing became more
affordable with increased computational power, new and slower password hashing
functions were developed. These include PBKDF2 (developed by RSA Laborato-
ries) and bcrypt, which allow parametrization of the hash’s runtime by adjusting
how many iterations the hash performs. However, these slower hashing functions
often have low memory requirements, which allow them to be run on fast, special-
ized hardware like ASICs and FPGAs. Even hashing functions with high memory
requirements often allow for time-memory tradeoffs, and are thus vulnerable to
attacks using custom hardware implementations.

Memory-hard hash functions (MHFs) are a new class of hashes developed to
make the time-memory tradeoff prohibitively difficult, requiring sufficiently large
amounts of memory. This proves problematic for custom hardware attacks, which
suffer high memory latencies and require an increase in chip area to store the
required amount of memory. The Argon2 hash function, winner of the Password
Hashing Competition, is one MHF design that is currently being recommended as
a more secure replacement to existing password hashes. Joël Alwen and Jeremiah
Blocki have published an attack that claims to decrease the effectiveness of Argon2
in preventing time-memory tradeoffs, thus making it much easier to compute many
hashes using custom hardware such as ASICs. In this report, we investigate the
significance of their attack and assess some possible improvements.

2 Project Statement

Our motivation for this project was to develop a better understanding of the
mechanics behind MHFs, and what sort of weaknesses they have. Our base goal
was to understand the hash and the attack well enough to develop a qualitative
judgement on just how concerning it is for the future of MHFs in crypto. Beyond
that, we also wanted to reimplement/model the attack in software, determine what
sort of optimizations were possible or not addressed, communicate with Alwen and
Blocki about our proposed optimizations, and potentially implement the attack
on an FPGA. We tabled the last goal as we came to a better understanding of
the attack, and realized that an FPGA implementation would not be sufficiently
advantageous or insightful for benchmarking.

2 of 16

Final Project 6.857 Computer and Network Security

Mitchell Gu
Ryan Berg

Casie Chen

3 Literature Review

Like any candidate cryptographic standard, Argon2 has been the subject of signifi-
cant scrutiny and some back-and-forth updates as researchers investigate potential
attacks against it. So far, this discourse has involved the authors of Argon2 (Alex
Biryukov, Daniel Dinu, and Dmitry Khovratovich), a group of researchers at Stan-
ford and Microsoft (Dan Boneh, Henry Corrigan-Gibbs, and Stuart Schechter),
and the authors of the attack we are interested in (Joël Alwen and Jeremiah
Blocki, hereafter referred to as A&B). The chronology is as follows:

• Feb. 2015: version 1.1 of Argon2 is published.

• Jul. 2015: version 1.2 is published. Changes include a nonlinear block
indexing function and a changed compression function.

• Jul. 2015: Argon2 wins the Password Hashing Competition.

• Aug. 2015: version 1.2.1 is released with another change to the indexing
function and some other minor updates.

• Jan. 2016: Boneh, Corrigan-Gibbs, and Schechter release a paper on Bal-
loon hashing that includes an attack on Argon2 that computes the hash in
1/3 of the memory and equal time as the honest algorithm [1].

• Feb. 2016: A&B publish a paper describing a general attack for all data-
independent MHFs - including Argon2i - involving attacking the depth-
robustness of the Argon2i computation graph [2].

• Mar. 2016: version 1.3 is released (referred to as Argon2i-B by A&B) that
requires new blocks to be XOR’d with the block being overwritten, patching
the attack from BCGS [3]. The authors argue that the bounds on attack
quality given A&B’s attack provide no benefit for practical hash parameters.

• Aug. 2016: A&B publish a response to v1.3 by making several optimizations
on their attack for Argon2i graphs and provide simulation data demonstrat-
ing favorable attack qualities for many practical hash parameters [4].

The Argon2 authors haven’t provided a formal public response to the second
A&B paper other than a GitHub comment indicating that the default number of
passes would not be increased to 10. In a discussion on the Crypto Forum Re-
search Group mailing list, Dmitry Khovratovich notes a minor misrepresentation
of Argon2i’s recommendations on choosing parameters, but no further conclusions.
Thus at the time of writing of this project, the consensus on how practically im-
portant A&B’s attack is remains unclear, which is something we hope our project
can shed light on.

3 of 16

Final Project 6.857 Computer and Network Security

Mitchell Gu
Ryan Berg

Casie Chen

4 Background

4.1 The Argon2 Hash

A characteristic of many hash functions is a time-area tradeoff: to be able to
compute the hash faster, more memory (area) is often required. For a MHF to
be effective, an adversary attempting to compute the hash with less than the
intended amount of memory will be forced to increase the execution time enough
to increase the time-area product. In other words, if an attacker designs a more
inexpensive ASIC chip that runs a dishonest Argon2 implementation with less
memory, the increase in execution time will be enough to increase the cost for a
certain hashrate. In the same vein, an attack on Argon2 would allow the hash
to be computed with less than intended memory and a small enough increase in
execution time to decrease the time-area product.

The design of Argon2 has two flavors - Argon2d and Argon2i. The former is
dependent on the input data to determine which blocks of memory to incorporate
at each step, while the latter does this in a data-independent way and therefore
is more secure to side-channel attacks. Like the Alwen and Blocki paper, we will
focus on the Argon2i flavor as the former is already vulnerable to side-channel
attacks by nature of its design (as acknowledged by the authors of Argon2i).

Argon2 starts by taking all its input parameters and running them through
its primary hash function H: Blake2b. Blake2b was a candidate hash function for
SHA-3 and is based on Daniel Bernstein’s ChaCha20 stream cipher. Chacha20
operates in a somewhat similar manner to AES in that the internal state is in-
terpreted as a matrix and a series of operations called quarter rounds permute
information in the state by cycling through rows and columns. This initial hash
serves the purpose of integrating all the inputs and parameters of the hash and
extracting their entropy into a single 64-byte output: H0.

Then, σ 1024-byte blocks of memory are allocated, where σ is an adjustable
parameter of the hash. The first two blocks of memory are initialized by applying
the Blake2b hash again to H0, concatenated by 8 bytes indicating the position
of the block. To produce a 1024-byte output, a variant of Blake2b is used that
produces variable length outputs. Each subsequent block Bi is computed by
choosing the previous block Bi−1 and a different previously computed block Bj ,
for j < i − 1), and then passing them through the compression function H. The
second block Bj is chosen via a probability distribution dependent on H. For an
Argon2 computation with τ iterations, the hash will perform τ iterations over
all σ memory blocks, filling τ ∗ σ memory blocks total and requiring τ ∗ σ − 2
computations of the compression function H.

Clearly, the effectiveness of the Argon2 hash is highly dependent on choosing
a good compression function H and a good method of mapping the current index i
to another index i′ in random-oracle fashion that cannot be predicted in advance.
If the compression function G is not ideal, then one could detect patterns in the
chaining of its outputs in a differential analysis attack. If the mapping of indices

4 of 16

Final Project 6.857 Computer and Network Security

Mitchell Gu
Ryan Berg

Casie Chen

Figure 1: Argon2 mode of operation

Figure 2: Argon2 compression function H

does not behave like a random oracle, an adversary could compute the hash with
less memory in acceptable amortized time by anticipating which memory blocks
may be used and which could be evicted.

4.1.1 The Compression Function H

The compression function H accepts two 1024 byte memory blocks X and Y and
outputs one 1024 byte memory block that is a strong function of both inputs.
It first computes R = X ⊕ Y , then views R as an 8x8 square matrix of 16-byte
registers and permutes the matrix using essentially the same round function as
used in Blake2b (and ChaCha20). The result of these round functions Z is then
XOR’ed with R again to yield the output.

5 of 16

Final Project 6.857 Computer and Network Security

Mitchell Gu
Ryan Berg

Casie Chen

4.1.2 Indexing

In Argon2i, the indexing of the memory blocks is done data-independently by
running H2 (two rounds of H) on a block of zeroes and a concatenation of several
Argon2 parameters. The output is then used to index into a set R of all blocks
that have already been populated. The mapping of the H2 output to the index
into R is intentionally very non-linear and favors older memory blocks over new
ones.

Finally, after all τ ∗m blocks have been iterated over, the output of the hash
is taken from the Blake2b hash of the final block. From the design of the Argon2i
hash, it’s easy to see the high-level intent of the authors: Fill the entire memory
space by growing a chain of 1024-byte blocks that are a function of the previous
block, but also an older block that is difficult to predict. The approach is simple
to understand and easily adaptable to more parallelism, but at first glance would
be very difficult to circumvent.

4.1.3 Revisions Made to Argon2i-A

Two changes of key significance to the strength of Argon2i were made before the
specialized A&B attack was published. First, the probability distribution that
selects the second dependancy block Bj was changed from a uniform distribution
to one that that heavily favors more recent past blocks, so as to ensure that all
blocks are used roughly the same number of times to compute future blocks. This
consideration ensures that there are not certain blocks in the chain that present
a higher value to a would-be attacker to store in memory, while the uniform
distribution made it much more advantageous to store the earliest blocks in the
sequence (as they accrued the most dependants over the course of the hash). The
second change affects how passes through the memory work. In Argon2i-A, the
last block in a pass p was chained into the first block of pass p+ 1, but once the
initializing blocks of the pass were complete, there was no reason to keep the rest
of the previous σ blocks in memory from the last pass. This allowed a potentially
trivial amortization to be made, as the honest hash would not need σ blocks to be
stored constantly, but only at the end of a pass. In Argon2i-B, this was changed,
so that instead of replacing the contents of the block in memory, the output is
XOR’ed to produce the new block, thus requiring that the σ memory blocks be
constantly utilized.

4.1.4 Simplifying Assumptions

For the rest of the paper we assume that parallelism is 1 for simplicity, but all
the ideas we develop can be exended to higher parallelism.

6 of 16

Final Project 6.857 Computer and Network Security

Mitchell Gu
Ryan Berg

Casie Chen

Figure 3: Example computation graph for θ = 16, τ = 3

4.2 The Alwen-Blocki Attack

4.2.1 Modeling the Hash as a DAG

The key framing for the A&B attack is that any member of the Argon2i hash
family can be represented as a particular directed acyclic graph where each node
corresponds to an block of memory to compute. Since τ passes are done over σ
blocks of memory, there are N = σ ∗ τ nodes in the graph labeled with [0..N-1].
Every node (except the first two) has indegree 3, with the three parent nodes
represent blocks that must be resident in memory to be able to compute the new
block of memory. Two of the parents are the inputs of the compression function
H: one being the previous node and the other being the randomly chosen node
within σ nodes. The third parent represents the change in Argon2i-B where each
block is XOR’d with the node it is overwriting, making the overwritten node a
parent of the new node. Figure 3 shows an example graph for σ = 16 and τ = 3.
The XOR edges have been omitted for visual simplicity.

The process of calculating the hash can then be analogized as a graph-pebbling
problem, with a pebble on a node signifying that node’s presence in memory
during a particular step. The first two nodes begin pebbled (initialized), and to
pebble a new node, the node’s parents must be pebbled. Once the sink node
(the last node) is pebbled, the hash is complete. In the honest algorithm, the
graph is pebbled with a sliding window of σ pebbles representing the σ memory
blocks the honest algorithm runs pebbles over. This uses O(σ) memory and takes
O(N) = O(σ ∗ τ) timesteps for a time-area complexity of O(σ ∗ 2τ).

4.2.2 Attacking the Graph’s Depth-Robustness

Alwen and Blocki made the observation that the randomized graphs generated
by Argon2i-B have limited depth-robustness. Limited depth-robustness signifies

7 of 16

Final Project 6.857 Computer and Network Security

Mitchell Gu
Ryan Berg

Casie Chen

Figure 4: Diagram of balloon and light phases for a larger graph

that one can find a subset of nodes S that is relatively small, but dramatically
reduces the depth of the graph. Alwen and Blocki present an algorithm that is
able to find a set S for any Argon2i graph, such that the resulting depth of the
graph with S removed is at most d, which is a number significantly lower than
the original depth N . The significance of this property is that if nodes in S are
always kept pebbled, any unpebbled node in the graph can be recovered within d
steps. There are many ways to select such a set S, which will be addressed in the
section on optimizations.

4.2.3 Light and Balloon Phases of Computation

The attack is broken up into sets of two phases, the light phase and the balloon
phase. Each light phase is broken up into g steps which each involve pebbling one
sequential node in a layer. At the end of each light phase, the next light phase
immediately begins.

The balloon phase occurs concurrently with each light phase, beginning g− d
steps from the end of the current light phase. It is the job of the balloon phase to
ensure that all parent blocks of the next light phase are pebbled before it starts.
It does this by greedily pebbling the depth-reduced graph until it has pebbled all
of the remaining parent nodes. This takes at most d operations due to the depth
of the reduced graph being bounded by d, ensuring that all possible parents are
ready before the next light phase begins. A diagram of how these two phases
alternate is shown in Figure 4.

4.2.4 Parallelization and Amortization

The memory usage of the light phase is essentially constant (not quite, as we
expand upon in 5.2.2), at L = O(|S| + δ ∗ g), where δ = 3 is the indegree of the
graph. The memory usage of the balloon phase is typically higher, but bounded at
B = O(σ). Because the balloon phase only takes up d steps for each g step layer,
that memory can be freed and pooled with other parallel staggered instances
of Argon2i, such that the total memory cost for any instance is L + g

dB. A
graph of the upper bounds on memory usage for the honest algorithm, single
algorithm, pooled attack, and amortized pooled attack is shown in Figure 5. One

8 of 16

Final Project 6.857 Computer and Network Security

Mitchell Gu
Ryan Berg

Casie Chen

Figure 5: Memory upper bounds for the various algorithms.

can see that once the attack is parallelized and the balloon phases are staggered
optimally, the attack’s amortized memory is less than the honest algorithm’s,
yet the computation time is identical. This indicates a favorable time-memory
tradeoff and an attack on Argon2i.

4.2.5 Simulation Results

Alwen and Blocki acknowledged the need to develop actual simulations of attack
quality, because asymptotic bounds and theoretical analysis can only go so far.
In their most recent paper, they developed C code to simulate their attack for
common parametrizations of the Argon2i-B hash. After the optimizations on their
attack presented in the paper, they found that for most practical ranges of σ, τ ,
and parallelism, their attack yields a favorable attack quality.

5 Our Contributions

5.1 Modeling the Attack

We began by using the attack-modeling code that Alwen and Blocki used to
write their paper. There were some bugs regarding the undocumented constraints
on random number generation on the computer they used, which resulted in
segmentation faults on all the machines that we tried the code on. We tracked
the segfaults down and applied an appropriate fix, but there was a considerable
memory leak that caused the program to crash before completion on one of our
computers which had 16GB of RAM. We had access to a server that had 128GB
of RAM, and so executed the code there (Fig. 6), but the leak still prematurely
terminated the program. Due to the finicky nature of debugging memory leaks in
C, and the fact that each attempt was costing upwards of 12 hours of computation,

9 of 16

Final Project 6.857 Computer and Network Security

Mitchell Gu
Ryan Berg

Casie Chen

Figure 6: screenshot of top, showing RAM usage of .102TB and runtime ≈ 14.5hrs

we decided to instead develop our own modeling/parameterization software in
Python.

Our Python software provided classes to generate both Argon2i-A and Argon2i-
B computation graphs and plot them in graphviz, a graph visualization package.
This enabled us to visualize A&B’s attack much more intuitively and suggested
areas of the attack that could be further optimized.

5.2 Genetic Algorithm Minimization of Depth-Reducing Set S

In their attack, Alwen and Blocki provide an algorithm that quickly computes a
set S that is guaranteed to reduce the computation graph G to a given depth d.
Their algorithm can be described as follows:

• For a target depth d, choose #layers and gap such that #layers·(gap+1) =
d. A reasonable first guess is #layers = gap = N1/4.

• View the graph as a grid with #layers layers and each layer split into
segments of size (gap+1)

• Ensure that no path can pass through more than gap nodes in for each layer.

– First, add the first node in each segment in each layer to S. This ensures
that there are no series chains of more than gap nodes since each node
has an edge to the next node.

– For the randomized edges that go from one node in the layer to an-
other node in the layer, check if the edge makes progress with regards
to segment position. This means that the edge goes from a node at
position i in a its to a node at position j > i in its segment. If the
edge doesn’t make progress, add the child node to S. Visually, one can
imagine this as stacking all segments of a layer vertically and ensuring
that all edges move either to the right or downwards.

The strategy of the algorithm is to split the graph into some number of layers
and evenly split the max depth amongst these layers such that each layer has max
depth of d divided by the number of layers. In Figure ??, the example graph from
earlier is shown, but with shaded nodes representing nodes in A&B’s set S. The

10 of 16

Final Project 6.857 Computer and Network Security

Mitchell Gu
Ryan Berg

Casie Chen

Figure 7: A&B’s generated set S. Here, #layers=3 and gap = 3

Figure 8: The computation graph in Figure 7 with S subtracted

following figure shows the computation graph with these nodes removed. The
theoretical maximum depth for this graph is 9, and the actual depth is 5.

However, the generated set S is not a minimal set: upon visual inspection, it
was clear that the algorithm was adding more nodes than necessary and a smaller
set S could be constructed. Intuitively, the minimal set S likely does not have its
longest path evenly distributed between the layers, as would be enforced by A&B
algorithm. The size of S is critical to the attack quality because it correlates
to a memory cost that cannot be amortized across multiple attack instances.
Thus improving the algorithm for generating S was a natural direction for further
optimization.

Finding the absolute minimal set S is likely an NP-hard problem. Therefore,
we opted to use a genetic algorithm to evolve an initial population of valid sets
into populations of sets smaller in size. The intitial population was seeded by
outputs of A&B’s approximation algorithm with an input offset parameter shifted
to different offsets. To generate a new generation, the procedure was as follows:

• Select the 10 fittest individuals in the population as parents of the next
population (10 smallest set sizes)

11 of 16

Final Project 6.857 Computer and Network Security

Mitchell Gu
Ryan Berg

Casie Chen

Figure 9: Average set size over 200 generations

• Randomly select pairs of these 10 parents and breed a child from them until
a new population of 100 individuals is generated.

• Given two parents, ”cross over” their genomes (sets) by selecting 20 random
crossover points from 1 to N and alternating which parent the child set
inherits from for each interval between crossover points.

• Randomly mutate the child’s genome with mutation rate 0.005 by flipping
each of N nodes’ inclusion in the set with probability 0.005.

• Ensure that the child survives. Here, we check that the depth of the compu-
tation graph G minus the child’s set of nodes has depth less than or equal
to the target depth.

This primitive genetic algorithm worked remarkably well for converging to
a local (possibly global) minimum set size. For a graph with 1000 nodes over 4
passes, the algorithm was able to optimize from set of size 525 provided by A&B’s
algorithm to a set of size 146. This process is shown in Figure 9. It was interesting
to observe that in the absence of either crossing over or random mutation, the
algorithm failed to converge. Only with a mixture of these two evolutionary
parameters was the algorithm able to descend into a deeper minimum.

To show the effect of the genetic algorithm visually, Figure 10 shows our
previous computation graph example after genetic optimization. One can see
that all the rules of A&B’s algorithm are discarded after many generations of
crossing over and mutation. The next figure shows the computation graph with
the optimized set removed. Clearly, the algorithm has taken full advantage of the
maximum depth 9.

12 of 16

Final Project 6.857 Computer and Network Security

Mitchell Gu
Ryan Berg

Casie Chen

Figure 10: The computation graph with the optimized set shaded

Figure 11: The computation graph with the optimized set subtracted

13 of 16

Final Project 6.857 Computer and Network Security

Mitchell Gu
Ryan Berg

Casie Chen

One practical concern of this approach is that it takes a long time to run.
However, since Argon2i graphs are data-independent and only depend on the
parameters of the hash (such as σ and τ), an adversary can precompute optimized
sets for every hash parameter set of interest. These precomputed sets can then
be loaded into a lookup table or ROM chip for an accelerated FPGA or ASIC
implementation of the attack.

5.3 Additional Layer of Parallelization to Amortize Memory Costs

While in the canonical A&B attack instances are amortized by spacing out g
d

balloon phases such that they can share a balloon phase memory pool, there is
an additional parallelization that offers constant-factor gains. Because a set S is
progressively pebbled as the hash goes through layers, hashes that are on earlier
layers will be consuming less memory on average for both phases. You can pair
up hashes in earlier layers with hashes in later layers so as to share a memory
pool and reduce total necessary memory.

5.4 Predetermining Actual Reduced Graph Depth

Because the layout of the graph is a function of the parameters of the hash func-
tion, and not a result of the input, attackers who have a specific hash in Argon2i
that they want to attack can predetermine the actual depth D of the reduced-
depth graph, instead of being concerned about the depth upper bound d. As a
result, they can parallelize g

D instances, rather than g
d .

6 Further Research Questions

Future areas of research include but are not limited to:

• Testing our genetic algorithm on significantly larger graph parameters, in
order to more accurately determine efficacy.

• Implementing the optimized, parameter-specific attack in circuitry and bench-
marking it with comparison to computers.

• Developing architectures for optimized but generalized circuits. Ideal pa-
rameters are specific to each Argon2 hash function (graph-specific), and are
not generalized to the Argon2 family as a whole, so developing circuits that
compromise/adapt to specific hash functions would reduce the total cost for
a dedicated attacker.

• Applying the method of attack to other notable MHFs.

• Developing MHFs that do not have constant indegree, and/or expanding
attack to compromise those graphs.

14 of 16

Final Project 6.857 Computer and Network Security

Mitchell Gu
Ryan Berg

Casie Chen

7 Conclusion

The attack proposed by Alwen and Blocki presents a considerable theoretical
threat to Argon2. What is currently lacking is a matter of constant-factor opti-
mization, which we have expanded upon in our models and proposals. However,
the hardware-optimized attack is not generalizable to different members of the Ar-
gon2 family, and it is unlikely for most targets to utilize the same member of the
family. This requires attackers to either buy quite sub-par generalized hardware,
or a different set of ASICs for each target, which presents a significant pragmatic
limitation.

The A&B attack is a concerning threat to any MHF with computation graphs
of fixed indegree, practically speaking it is still an improvement over the disparity
between ASICs and computers in performace on non-memory-hard hashing for
passwords. Since most systems take a while to upgrade to modern standards, the
sooner MHFs are adopted, the better.

8 Acknowledgements

We would like to thank Ronald Rivest, Yael Kalai, Sunoo Park, and the rest of
the 6.857 course staff for their support and guidance throughout the semester and
the course of this project. We would also like to thank Tristan Honscheid ’18, for
providing us with access to high-RAM computing.

Special thanks to Jeremiah Blocki for providing feedback on our proposed op-
timizations.

9 References

[1] D. Boneh, H. Corrigan-Gibbs, and S. Schechter, “Balloon hashing: A memory-
hard function providing provable protection against sequential attacks.” Cryp-
tology ePrint Archive, Report 2016/027, 2016. http://eprint.iacr.org/

2016/027.

[2] J. Alwen and J. Blocki, “Efficiently computing data-independent memory-
hard functions.” Cryptology ePrint Archive, Report 2016/115, 2016. http:

//eprint.iacr.org/2016/115.

[3] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: the memory-hard func-
tion for password hashing and other applications,” 2017. Version 1.3. https://
github.com/P-H-C/phc-winner-argon2/raw/master/argon2-specs.pdf.

[4] J. Alwen and J. Blocki, “Towards practical attacks on argon2i and bal-
loon hashing.” Cryptology ePrint Archive, Report 2016/759, 2016. http:

//eprint.iacr.org/2016/759.

15 of 16

http://eprint.iacr.org/2016/027
http://eprint.iacr.org/2016/027
http://eprint.iacr.org/2016/115
http://eprint.iacr.org/2016/115
https://github.com/P-H-C/phc-winner-argon2/raw/master/argon2-specs.pdf
https://github.com/P-H-C/phc-winner-argon2/raw/master/argon2-specs.pdf
http://eprint.iacr.org/2016/759
http://eprint.iacr.org/2016/759

Final Project 6.857 Computer and Network Security

Mitchell Gu
Ryan Berg

Casie Chen

10 Appendix

Our Python code, both for modelling/graphing the Alwen-Blocki attack and re-
ducing the set S via genetic algorithm, can be found at https://gist.github.

com/ryantberg/71dd6bb5149189a4d0b793aa943e1a2c

16 of 16

https://gist.github.com/ryantberg/71dd6bb5149189a4d0b793aa943e1a2c
https://gist.github.com/ryantberg/71dd6bb5149189a4d0b793aa943e1a2c

	Introduction
	Project Statement
	Literature Review
	Background
	The Argon2 Hash
	The Compression Function H
	Indexing
	Revisions Made to Argon2i-A
	Simplifying Assumptions

	The Alwen-Blocki Attack
	Modeling the Hash as a DAG
	Attacking the Graph's Depth-Robustness
	Light and Balloon Phases of Computation
	Parallelization and Amortization
	Simulation Results

	Our Contributions
	Modeling the Attack
	Genetic Algorithm Minimization of Depth-Reducing Set S
	Additional Layer of Parallelization to Amortize Memory Costs
	Predetermining Actual Reduced Graph Depth

	Further Research Questions
	Conclusion
	Acknowledgements
	References
	Appendix

