
PreVeil E2EE Email: Security Review

Severyn Kozak, Max Murin, Wendy Wei

6.857, Spring ’17

1 Overview

We conducted a security review of the client software for PreVeil, an end-to-end encrypted email
service currently in its beta phase. PreVeil packages strong security features, like true end-to-end
encryption, private keys instead of passwords, and decentralized key recovery, into a polished and
smooth user experience (traditionally a big obstacle to the widespread adoption of secure email). We
present a high-level overview of how PreVeil works and its key features (section 2), the threat model
it operates under (3), and finally thoroughly evaluate the security of the critical parts of the client
codebase (4).

2 How PreVeil works

PreVeil is built around public-key cryptography. The gist is that every user has a private/public key
pair – the public key is made public to all other PreVeil users, and the private key is kept secret on
the user’s machine. To send someone an email, you encrypt it under their public key to ensure that
only they can then decrypt it with their secret key. You can access your PreVeil emails on multiple
devices by securely transferring your private key, and you can appoint so-called approval groups to
securely recover your private key should you lose it.

2.1 Getting started

To get started, you download and install the PreVeil client software and register an @preveil.com
account. On account creation, you’ll generate a public/private key-pair. The public key gets sent to
the server along with your username and other account metadata, whereas the private key gets stored
locally (where it should remain).

2.2 Sending/receiving emails

If user A wishes to send user B an email, A first generates a random symmetric encryption key K.
A encrypts M under K to produce CM , and then encrypts K under B’s public key PKB to produce
CK . Finally, A produces a signature σ of CM using their secret key SKA. A then sends (CM , CK , σ)
to the PreVeil server.

To retrieve A’s email, B downloads (CM , CK , σ) from the server and reverses the above process.
They first retrieve A’s public key and use it to verify the signature σ. They use their private key to
decrypt CK and thus retrieve K, which they then use to decrypt CM and retrieve M .

2.3 Key recovery

If a user loses their private key, they’re effectively totally locked out of their account. There’s no
equivalent of a “password reset” since the PreVeil server doesn’t know anything about users’ pri-
vate keys. PreVeil implements secure key recovery through Shamir Secret Sharing, which distributes

1

https://www.preveil.com/
https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing


“shards” of the key to an approval group (of configurable size) – a small group of other users that the
account owner trusts. To recover their key, the account owner asks their approval group to send them
the key shards, a strict number of which must be collected before recovery can occur (with any fewer
shards, the key is mathematically underspecified and simply can’t be recovered). Thus, individual
shards don’t reveal anything about the key, and can thus securely be distributed to individual users.

2.4 Adding new devices

Users will often want to access their inboxes on multiple devices (their home computer, laptop, mobile
phone, etc.) To do so, they need to securely transfer their private key to new devices, which is executed
through a secure channel brokered by the PreVeil server.

3 The PreVeil Threat Model

In the PreVeil threat model, the centralized server is completely untrusted and is modeled as a passive
attacker. That is, an adversary is assumed to have read-only access to the server – they can read
any data on it (or passing through it) at any time. Thus, it’s critical that no sensitive data, like
unencrypted emails or even more important, users’ private keys, gets sent to it.

Active attackers, on the other hand, are out of scope. An active attacker is assumed to actively try
to sabotage the user, which they might accomplish by deviating from PreVeil protocol, sending users
a malicious software update that uploads their private key to an attacker-controlled server, or simply
changing every public key in the PreVeil system to the attacker’s (which would allow them to decrypt
any emails that get sent in the future). For obvious reasons, active attacks are very difficult to guard
against, but the PreVeil team is working on features that make them more difficult to mount.

This security review is restricted to verifying the correct functionality of the client software. Au-
diting server software is unnecessary for our purposes because the server is untrusted in the first place,
which means we only need to verify that the client is not susceptible to attack and doesn’t send any
sensitive data to the server. We assume the correct functionality of technology that PreVeil is built
on, like the libnacl cryptographic library and SSL, and also that the user’s machine is malware free.

4 Security Review

Here, we thoroughly explore each of PreVeil’s major components (sending emails, key management,
etc.) and document the code pathways involved, and why we deemed them secure.

4.1 Account creation

The primary concern with account creation is that private/public keys are randomly generated, and
that only the public key gets transmitted to the server while the private key remains on the user’s
computer (we explore this more extensively in the next section, Key Management). Account
creation is initiated by POSTing a username and display name to the /users endpoint on the back-
end. The user then “claims” and sets up this account by querying the setupNewAccount() route
on crypto server .py, which defers to crypto helpers .claimAndSetupNewAccount(). Here, a private
key is randomly generated with crypto helpers .keys.RawPrivateKey() and written to local storage
(crypto helpers/crypto helpers.py:92), whereas the corresponding public key is sent to the PreVeil
server (crypto helpers/crypto helpers.py:66). The private key doesn’t leave the user’s computer, so
account creation is secure, and from here on it’s up to ambient key management to ensure that the
private key never leaves.

2

https://nacl.cr.yp.to/


4.2 Key management

Encryption, decryption, signing, signature verification, and all other cryptographic operations are per-
formed by crypto server .py, which thus is the only part of the codebase that directly handles the user’s
private and public keys. Private keys can only be accessed through CryptoUserData.getPrivateKey()
(defined in crypto helpers/user.py), and we manually assessed its usage throughout crypto server .py
(15 occurrences at the time of writing) and verified that private keys never left it. Time permitting, a
rigorous practical text (like scanning all outbound PreVeil requests for the private key strong) might
be an interesting way of confirming that the private key is never accidentally sent out.

4.3 Sending emails

Emails are composed in the PreVeil frontend and then posted to the crypto server daemon at
/put/account/< sender id>/message. The request gets routed to the sendEmail() function in crypto server .py,
which initializes an EmailSender for the sender and uses it to send the emails through EmailSender.sendEmails() .
sendEmails() constructs a MIME email object through crypto helpers . email util .buildEmails() ,
which it then appends to the local inbox and finally sends to the SMTP server running on port
4001. Even though sending an email through PreVeil only involves uploading it to the /storage/ end-
point of the server’s API, a full-blown local SMTP server is necessary because it allows PreVeil to be
used through Outlook, Apple Mail, and other Mail User Agents (MUAs), which expect to send emails
to an SMTP server. The SMTP server, implemented in smtp server.py, bundles the email into a
PreparedMessage (defined in util .py), which is what actually handles the encryption in its construc-
tor. PreparedMessage first calls fetchOpaqueKey() to generate a random key to symmetrically en-
crypt the email, which it then encrypts with the receiving user’s public key through userEncryptAPI().
It then separately encrypts the message body and attachments through self . encryptBlock(); some
parts of the email metadata (subject, recipient, etc.) is private, while others are public (like the
message ID and the In-Reply-To header). The PreparedMessage is then passed to sendMessage(),
which uploads it to the server through PreparedMessage.upload(); metadata is posted to the server’s
/mail/<recipient cid> endpoint separately.

4.4 Receiving emails

Assessing the security of receiving emails isn’t a huge concern because it simply involves download-
ing new emails from the server and decrypting them correctly, but we at least want to verify that
email signatures are checked. The email-receiving pipeline begins in the doUpdate() function in
imap server.py; doUpdate() immediately calls postlord.py’s implUpdate(), which fetches “update”
metadata from the PreVeil server through fetchUpdates() – this informs it of whether any new emails
have arrived in the user’s inbox. fetchUpdates() then defers to writeUpdateToLocalStore(), which
decrypts the emails in reconstructEmail() . reconstructEmail() verifies the email signature with the
following block of code:

v = util.userVerifyAPI(sender, signing_key_version, canonical_msg_str,

signature, doas=user_id, is_text=True)

4.5 Approval groups (key recovery)

Approval groups are Preveil’s solution to account recovery. If a user loses their private key, it is not
possible to recreate that key from data stored on the server. Thus, a user can designate a set of other
Preveil users to hold shared secrets, or shards, that combine to form the private key. These shards
are created with SSSA, a public library for running Shamir’s Secret Sharing in Python. This part of
Preveil is an interesting place to look for vulnerabilities, because if any part of this system is subtly
wrong, then the server can gain access to a user’s private key.

3



At a high level, the approval group process works as follows. A user, henceforth the recovering
user, uses Shamir’s algorithm to split their private key into shards. Then, each shard is encrypted
with the desired user’s public key, and sent to the server. Then, when the key needs to be recovered,
the recovering user and the approving user use the WebSocket protocol, relayed by the server, to
communicate. The approving user retrieves the shard from the server, decrypts it using their private
key, and encrypts it using a one-time key for that session. Once the recovering user receives all the
required shards, that user can recover the secret with Shamir’s algorithm and regain their private key.

Approval group creation is handled by the /post/account/<user id>/approval route in crypto server .
This route requires a json request with properties required users , optional users , and optionals required .
This route takes the private key, and uses the class ApprovalGroup to generate shards with Shamir’s
Secret Sharing. First, the key is split into a number of shards equal to the number of required users,
plus one extra if there are any optional users, so that every one of these shards must be known to
recover the secret. Then, the extra shard is split again over all the optional users, only requiring
optional users users. For each of these users, the system gets the public key from the server, and
encrypts that user’s shard using their public key. Then, these encrypted shards are sent to the server
at https:// collections . preveil .com/users/approvers using the APIClientCrypto class, which signs
messages with the user’s PreVeil private key.

Since the URL begins with https, these groups are sent to the server over TLS, which verifies
the identity of the server using certificates. The user verifies themselves with their PreVeil key.
TLS will make the communication private, so that an attacker who overhears the message cannot
learn anything about that user’s approval groups. This appears secure from network attackers, but
this approval group behavior is notably different from Preveil’s online explanation at https://www.

preveil.com/technology/, which claims that the user’s private key is encrypted with a symmetric
recovery key, and that this recovery key is then split into shards.

Since PreVeil is an end-to-end system, we must ensure that the PreVeil server does not gain
any information about the user’s private key from these shards. Since they are encrypted with the
approving users’ public keys, the server does not gain any information about the key. The server
does, however, know what users are part of the approval group, and so an attacker who can read data
on the server can learn this information and attempt to use social engineering to retrieve the user’s
private key.

When a user needs to retrieve the shards from other users, the user cannot interact with the
server in the same way as when they are depositing the shards, because they do not have their
PreVeil private key with which to sign messages. Instead, the user uses WebSockets over TLS in
the get/account/<getter id>/shard/<sender id>/get route in crypto server . The approving user
sender id must simultaneously use the /get/account/<sender id>/shard/<getter id>/send route on
their own version of crypto server , which also communicates with the server using WebSockets over
TLS. The server apparently acts as a relay between the two users, taking messages sent by one user
and sending them to the other. The two users must communicate through other channels to start the
approval process.

When both users are connected, they generate one-time use public/secret keypairs, and send each
other the hash of their public key. After both parties receive the hashes, they then send the actual
public keys over the same channel, and ensure that they match the hashed values. We are not sure why
the system uses hashes in this way; the system claims that this process helps with man-in-the-middle
attacks, but it seems to us that a man in the middle who can intercept messages and replace them
can simply send their own hash and public key, instead of just their own public key.

Then, the approving user requests the corresponding shard from the server at
https:// collections . preveil .com/users/approvers/shard. Similarly to the creation of the approval
group, messages to the server are signed by the approving user’s secret key, and since they are sent
over TLS, they are secure under our assumptions. The approving user decrypts the shard, then
encrypts it with the one-time secret key for this transaction, and sends it over the WebSocket. The
recovering user then decrypts the shard, which they then store locally, and end the transaction.

4

https://www.preveil.com/technology/
https://www.preveil.com/technology/


Once every shard is gathered, they can be restored by SSSA to the full public key. Each approving
user only ever sees one shard, so they cannot gain access to the public key without conspiring. Since
the approval group model assumes that the approving users are trusted, this vulnerability is out of
scope.

4.6 Adding Devices

A single user can use PreVeil on multiple devices. Each device must contain the user’s private key in
order to use PreVeil. If at least one device has the user’s private key installed, then during installation
on a new device, the process of key transfer will send a copy of the private key from the old device to
the new device.

Key transfer uses the same WebSockets over SSL/TLS protocol that is used for sending shards in
approval groups. WebSockets allows for bi-directional messages between the client and the server.
SSL/TLS ensures that the server is trusted through certificates and that the communication is
authenticated using asymmetric key cryptography. The device that sends the key uses the route
/get/account/<user id>/key/send in crypto server to connect with the server, and the receiving de-
vice uses the route /get/account/<user id>/key/get in its own copy of crypto server to also connect
with the server. The PreVeil server at wss:// collections . preveil .com/relay ws is used as a relay web-
socket between the browser websockets on the two communicating devices. We cannot guarantee that
secure WebSockets are secure against all man-in-the-middle attacks (MITM server can masquerade
as PreVeil server, or untrustworthy Certificate Authority is used).

PreVeil uses additional steps to protect the private key during the message passing between the
old device and the new device. This code is contained in the sendSecureMessage() function in
send keys handler, which is called by both sendKeys() used for key transfer and sendShard() used for
approval groups in crypto server , so this process is similar to the one detailed in Section 4.5. The re-
ceiver simultaneously calls the corresponding function getSecureMessage() in get keys handler. After
both devices are connected via the websockets, they each create anonymous one-time use private/pub-
lic key pairs. The sender and receiver wait for the each other’s public key hash as a pre-handshake,
and then they send their actual public keys, which are verified against the hashes to complete the
handshake. Then, to verify that the correct devices are connecting, a pin verification step occurs (the
pin is like a shared secret key). The receiver sends a pin to the websocket. The sender listens for the
pin, and if the pins match, it encrypts and sends the secret message to the websocket. The receiver
waits for this encrypted message, decrypts it when received, and stores the private key on the device.

Since PreVeil promises end-to-end encryption, we must ensure that the PreVeil servers have no
way of receiving the user’s private key at any time, even if for a moment. The encrypted message
that is passed through the Websockets connection contains the encrypted private key. In the function
sendKeys() in crypto server , the private key is retrieved from the device’s local storage and then
directly passed to the sendSecureMessage() protocol described above. Since sendSecureMessage()
operates on the device rather than on the server, the private key never leaves the device unencrypted.
Since the PreVeil server is used as a relay between the two communicating devices, PreVeil may be
able to see the encrypted private keys. Although this may be potentially risky, we don’t think it is a
serious risk, since each private key that is sent in a message is encrypted with a one-time use key for
that specific message. It is unlikely that an adversary would be able to guess the decryption function
for each encrypted private key.

4.7 Secure Updates

PreVeil’s update installer should not provide attackers opportunities to introduce malicious updates.
In order to install updates securely, an authenticated connection and/or authenticated downloads are
recommended to ensure integrity and authenticity.

The updater server at https://deploy. preveil .com:8080 uses HTTPS with SSL to connect with
the user’s browser, meaning that the connection is authenticated. The downloads themselves are

5



also authenticated using asymmetric key cryptography. Each update sent by the server is signed by
PreVeil’s private key, and the user’s device verifies the signature using PreVeil’s public key.

PreVeil’s public key is stored on the user device at in a file called verifier prod .txt in the
updater/conf directory. This file is placed during the initial installation, preventing a man-in-the-
middle attacker from masquerading as PreVeil in future updates. Unless this public key is somehow
manipulated, we can ensure that it is indeed PreVeil who is managing the servers providing the
downloads.

The code which fetches updates from the server is in remoteFetcher. At a high level, first,
getUpdateMeta() allows the updater to determine if the version being served is any good. Then,
the updater has the option of pulling the download using getUpdate(). After the download is pulled,
then the signature is verified, and only then is the update actually installed. If the signature is invalid,
then the download is not installed, so that when a user runs PreVeil, none of the code in the invalid
download is run.

In more detail, the method that starts the updater server in remoteFetcher first checks that the
user is running as root. It finds the signature verifier key path, uses libnacl to load a key from the
path, and starts an update loop that calls getUpdateMeta() and doUpdate(). The getUpdateMeta()
method pulls from the URL https://deploy. preveil .com:8080/getUpdateMeta using the current ver-
sion as a parameter. Then, it checks the status: “error”, “ok” (up to date), or “update” (update
available). If an update is available, it checks the version and signature of the update, and returns
metadata about the update. Then, the doUpdate() method uses the update version to download data
from https://deploy. preveil .com:8080/getUpdate. The doUpdate() method also takes the signature
verifier key as its input. It verifies the signature contained within the update metadata, which is
packaged along with the update data. The update is started only when the signature is verified. The
method applyUpdate() installs the verified download.

We noticed in the comments of the code in remoteFetcher that it was noted that a failure mode
occurs when client count == max clients on the server, for a version that could upgrade the client.
Apparently, the server then returns an error, and the client will decide not to proceed with the
download, even if an upgrade is available. If this bug has not been fixed yet, it could be a potential
risk, because it is crucial that users are able to upgrade their software at all times. We can imagine
a scenario where an important software patch is released, fixing a vulnerability, and the user cannot
pull the update.

4.8 Frontend

The primary danger in the front-end is the injection of arbitrary JavaScript code, which might send
sensitive information to an attacker’s server or make a local request to the crypto server that sends
an email on your behalf. This can occur if, for example, someone sends you an email containing
script tags and your email client doesn’t properly them sanitize them. We tested the PreVeil client for
injection vulnerabilities by sending several emails containing script tags in various places (the email
body, subject, attachment names, etc.) and couldn’t break anything. We found that the email body
is rendered inside an iframe, which completely sandboxes any JavaScript that it might contain, and
that all the other email fields are properly sanitized.

5 Results

We extensively explored several parts of the codebase and couldn’t find any major security flaws. We
did, however, document what we looked at and why we deemed it secure, and hope that the PreVeil
team will benefit from those assurances. We did find a minor security problem outside of the client,
which we document below. We also briefly discuss a simple test we applied to ensure that all outbound
emails got properly encrypted.

6



5.1 Debugger left running in production

We found a Werkzeug debugger running in production on https://deploy.preveil.com, which was
revealed when we triggered a minor crash on the server. This has the potential to be a major security
hole because the debugger allows for arbitrary remote code execution, but the PreVeil developers are
using an up-to-date version of WerkZeug which password-protects the debugger with a PIN that’s
printed in the server-side logs (we looked into potentially cracking the PIN, but it’s nine characters
long and Werkzeug limits you to only 10 incorrect authentication attempts). The target URL was
https://deploy.preveil.com:8080/getUpdateMeta, and below is a screenshot:

5.2 Outbound email test

We conducted a simple test by modifying the PreVeil client to save all outbound emails to disk so that
we could manually look them over. We added a few lines of code to util .PreparedMessage.upload(),
which is responsible for uploading emails to the PreVeil server, that saved each data block of the email
before it got sent out. We then sent a few emails in the client, and checked the saved versions to make
sure that everything inside was encrypted (and that no parts of the email were accidentally sent out
as plaintext).

6 Conclusion

In our security review, we found no vulnerabilities in the PreVeil client, under the assumption that the
underlying primitives, such as libnacl and SSL, are secure. We did find that PreVeil’s online description
for key transfer and approval groups differed somewhat from how they were actually implemented.
We also stumbled upon an online debugger while looking through the way that updating works, which
is a potential point of attack on the server. We will be looking for future developments from Preveil
with interest.

7

https://deploy.preveil.com
https://deploy.preveil.com:8080/getUpdateMeta

	Overview
	How PreVeil works
	Getting started
	Sending/receiving emails
	Key recovery
	Adding new devices

	The PreVeil Threat Model
	Security Review
	Account creation
	Key management
	Sending emails
	Receiving emails
	Approval groups (key recovery)
	Adding Devices
	Secure Updates
	Frontend

	Results
	Debugger left running in production
	Outbound email test

	Conclusion

