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1 Introduction

Passwords are an essential part of everyday life. From email to games, from
online shopping to bank accounts, it seems every website and app these days
requires a new account, and with it, a new password. How do people remember
all of these passwords? Some people simply use the same password for every
website, but this is extremely risky because a compromised account on one
website means that all of your accounts are compromised. In the 2013 Yahoo!
data breach alone, over 1 billion passwords were compromised.

In the United States, an average user has a shocking 130 online accounts
[17]! That’s 130 passwords to remember, if you use a different password for
each site. Unable to remember all of these passwords, users typically resort to
writing down their passwords, storing them in their computer via “remember
password”, or resetting their passwords via email. The first two options are
insecure because a thief who steals your wallet (assuming you store your written
passwords there) or your laptop can gain access to all of your accounts. Being
able to reset passwords via email just links all of your accounts to your email
address, which means that the security of each account is only as strong as the
security of your email account.

In this paper, we analyze the challenge of having secure passwords for a
large number of accounts. Our contribution is to first propose a framework
for evaluating the usability, memorability, and security of password schemas.
Then, we develop a novel scheme that allows users to securely compute different
passwords for different websites. Finally, we use the frameworks we developed to
analyze our proposed scheme and compare it against existing password schemas.

2 Existing References

Researchers have studied password hashes for the server side to store passwords
securely. And techniques for creating and even memorizing a single strong pass-
words have been studied and proposed. [1] However, the challenge of creating
and memorizing multiple secure passwords for tens of accounts a person nor-
mally has is not addressed enough by these researches. For example, a bio-metric
authentication satisfies the requirement of being secure, with a large password
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space, and being easy to remember, with minimum effort to recall. But it
doesn’t solve the challenge of security across multiple sites. As each site can
be vulnerable of password leakage, the security analysis of a multiple accounts
password scheme must address the possibility of remaining secure even after the
adversary have gained access to valid account-password pairs.

To address the hardness of remembering long passwords that consist of let-
ters and digits, [2] proposed a scheme of using a signature-based user identi-
fication system. Based on studies in cognitive science [3], humans remember
pictures far better than texts and numbers. Therefore, drawing a signature
would lower the burden of remembering the password. [4] also proposed a simi-
lar scheme, together with a carefully designed metric to assess the security of a
drawing by evaluating the amount of information it contains. Such a metric is
useful for comparing the relative of security different drawings, but doesn’t pro-
vide the absolute security information against a real world adversary. Although
graphical based passwords are easier to remember than the normal text based
ones, users that use multiple different graphical passwords are still more likely
to fail [5].

[1] also addresses the challenge of remembering a password, by converting
a random assigned bit string to a set of easy to remember English words. It
evaluates the resulting techniques by conducting user studies instead of using a
formalized model. [6] evaluates usability by formalizing the number of rehearsals
required for remembering a password, and also proposes a security game that
accounts for the scenario that the adversary has gained access to some valid
account-password pairs. [7] further includes the amount of computation into the
model to evaluate usability of a password scheme. It also quantitatively evaluate
the security by the number of valid account-password pairs the adversary needs
to successfully predict a valid password for a new account. [8] formulates yet
another model to evaluate the security, and only states some constraints that a
usable scheme must satisfy.

3 Human Usability Analysis Framework

Of course, as we are creating a password scheme for humans, it needs to be
human usable. To determine human usability, the best way is through a ran-
domized experiment with real human subjects. Of course, human subjects are
difficult to obtain and user testing is expensive and time-consuming.

3.1 Criteria for Analysis

We determine human usability through the following criteria, partially based
on [7]:

• Pre-Processsing Time

• Processing Time
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• Memorability

• Ease of Change

• Subjective Goodness

We will conduct a pre-test and post-test questionaire to determine subjective
goodness of the scheme, use the initial test to determine pre-processing and
processing time, and use the followup test to determine memorability and ease
of change.

3.2 Test Subject Selection

Given that user testing is expensive and time-consuming, our user tests will
probably consist of a convenience sample drawn from our peers. We may de-
cide to ask our friends to participate in these tests, or send out an email to
dorms encouraging people to participate in our tests. Of course, participation is
completely voluntary, so our results may suffer from slightly voluntary response
bias. We may also opt to do the testing online rather than in person, to make
it easier for users to participate (described in more detail in Testing sections
below).

Because the number of sites that the user needs to remember passwords
for plays a critical role in memorability and processing time for any password
scheme, we will divide the user groups into four classes, 5 accounts, 10 accounts,
15 accounts, and 20 accounts. This will allow us to gather better insight into
how the various metrics scale with the number of accounts.

3.3 Pre-Test Questionaire

In the pre-test questionaire, we are going to ask the following questions:

1. On a scale from 1 to 5, how good do you think this password scheme is?

2. On a scale from 1 to 5, how likely are you to use this password scheme?

3. On a scale from 1 to 5, how secure do you think this password scheme is?

4. On a scale from 1 to 5, how easy to use do you think this password scheme
is?

5. On a scale from 1 to 5, how memorable do you think this password scheme
is?

6. On a scale from 1 to 5, how flexible do you think this password scheme is?

We will ask the list of questions above for our password scheme, as well
as one or two benchmark schemes (such as using the same password across all
sites, or using different passwords for each site), in order to better calibrate
responses, since different users may rate on different scales (some users may be
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biased towards giving high ratings, others may be biased towards giving low
ratings).

The rating for each question will be computed as

R′ = R−B

where R′ is the adjusted rating, R is the original rating, and B is the bench-
mark rating.

3.4 Initial Test

We will first give the test subject a quick overview of our project and what it is
that we’re testing. Then, we will give the test subject the pre-test questionaire to
fill out. We will then give the user our chosen password scheme, with randomly
generated parameters/keys, and measure the amount of time the user takes
before they can reliably type the password for each account they have. By
reliably, we mean that they can type in each account’s password in succession
without any errors. This will yield the pre-processing time.

Once the user has memorized the scheme and can type each account’s pass-
word reliably, we will ask the user type each account’s password in succession,
and repeat that two times (for a total of three rounds through all accounts),
to get more data. This will allow us to compute the mean and variance of the
processing times.

In order to make it easier to participate (and thus have more users test our
scheme), we may make the testing online and fully automated. In particular,
we can create a website that tells them their password generation scheme, keeps
track of the amount of time they take to get all the accounts’ passwords correct
in one round (pre-processing time), and records the amount of time they take
for each account password in each of the three later rounds (processing time).

3.5 Followup Test

The followup test will be conducted a week after the initial test. In the fol-
lowup test, we will first ask the user to recite the password scheme and its
keys/parameters, to see if they actually remember the scheme itself. We will
measure the time taken to recite the scheme correctly, or the amount of error if
they do not recite the scheme correctly. We will then ask the user to type in the
password for each account in turn, measure the amount of time taken to type
the password correctly, or the amount of error if they type it incorrectly. For
both the scheme and for each password, we will allow the user at most three
tries to get it correct.

The empiral memorability for each password will be

EMp =

{
1 if the user gets the password correct

x ∈ [0, 1] if the user gets x amount of the password correct
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The empiral memorability of the scheme is the average empirical memora-
bility over the passwords for each site. Of course, we can get a more accurate
metric if we do multiple followup tests at different time intervals, but it would
be very difficult to obtain human test subjects willing to go through that many
user tests.

We will also measure the flexibility in the scheme, in terms of how easy it
is to change the parameters of the scheme and thus compute a different set of
passwords. This may be necessary if some passwords are compromised and you
want to change the passwords for those accounts, or if your workplace requires
you to change passwords periodically.

To measure the flexibility and ease of change, we will change the parame-
ters of the scheme and measure the user’s new pre-processing time on the new
parameters. If the preprocessing time is less than the pre-processing time for
the initial test, then the scheme is conducive to change in parameters. If the
preprocessing time is same as the initial test, the scheme is neutral with respect
to change. If the preprocessing time is actually greater than the initial test,
the scheme is unconducive to change. In this case, it means that a user who
has never seen the scheme would do better than someone who has memorized
the scheme with different parameters, so it is likely that the already memorized
parameters conflict with the new parameters and hinder the users’ ability to
memorize new parameters.

Finally, we will conduct a post-test questionaire.

3.6 Post-Test Questionnaire

In the post-test questionnaire, we are going to ask the same questions as the
pre-test questionnaire, and see how the users’ feedback changes after they use
our password scheme in the tests. We will use a weighted average of the pre-test
and post-test questionnaire ratings for each question to determine the overall
rating of our password scheme in a particular dimension:

Ro =
R′i + 2R′f
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where Ro is the overall rating, R′i is the adjusted initial rating, and R′f is
the adjusted final rating.

4 Memorability Analysis Framework

Our framework for characterizing the memorability and human-computability
of multi-account password generation schemas focuses on three main properties:

(i) Amount of pre-processing time needed to learn the scheme:
– How long does it take to commit all necessary information to long-term

memory, so that it may be recalled accurately and reliably?
– How long does it take to memorize the set of instructions needed to

generate a new password?
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(ii) Amount of processing time or computing effort need to generate new
passwords:

– After the private key and set of instructions for the password generation
scheme is learned, how long does it take to generate a password for a new
account?

(iii) Self-rehearsability :
– In the process of computing passwords for commonly used accounts,

is each discrete instruction of the password generation scheme rehearsed often
enough?

– How easy is it to recall instructions or character mappings from long-
term memory that are less frequently used?

Metrics for each of these properties will be quantified in normalized units,
and weighted to generate an overall memorability score for a password scheme.

4.1 Pre-processing Time (Long-term Memory Burden)

Pre-processing time is a metric for how much effort is required for a user to
memorize all of the private “key” information (e.g. a character/digit mapping
for each letter of alphabet), as well as the set of (published) instructions spec-
ified by the password generation scheme. All of this data must be rehearsed
and committed to the user’s long-term memory before the password generation
scheme can be used successfully.

Let I be the number of distinct instructions (concretely, these could be arith-
metic operations) specified in a password generation scheme. Note that looped
or recursively defined instructions should not be multiply-counted, as long as
they can be conceptualized in the human user’s mind as a single operation that
gets repeated. For example, I might be estimated by counting the number of
lines needed specify the password generation scheme in a standardized pseudo-
code language.

Let D be the number of characters/digits required to memorize the user’s
private key. Concretely, this private key could be a random character mapping
that the user must commit to long-term memory a priori.

Though a model might weight the difficulty of memorizing instructions (I)
vs. data (D) differently, we assume that the total long-term memory information
content of a password generation scheme can be equally weighted as I +D.

Roughly, how does the human “effort” needed to commit all this data to long-
term memory scale with the information content, I + D? One way to produce
a quantifiable metric is to estimate the expected number of trials needed before
the password generation scheme is learned without error, assuming that each
individual instruction or data value is misremembered or forgotten with a small
probability δ during the long-term memorization (i.e. learning) phase.

If the probability of individual memorization errors is δ, and we furthermore
assume that potential memorization errors occur independently from each other,
then the probability that the password generation scheme is executed accurately
(i.e. produces the correct password) in any single trial of the learning phase is:
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Psuccess = (1− δ)(I+D). Note that all instructions and private data values must
be recalled correctly for the password generation scheme to succeed.

Hence, the expected number of trials – which serves as a measure of long-
term memory burden, or “human pre-processing effort” – needed to accurately
learn a new password generation scheme is modeled as:

PT = 1/Psuccess = (1− δ)−(I+D),

where δ can be either an arbitrarily chosen small constant, or estimated
empirically. A higher PT score thus indicates that a password scheme is less
desirable in this human memorability framework.

4.2 Computing Time (Short-term Memory Burden)

Once the user has committed the password generation scheme’s published in-
structions as well as his/her private key data to long-term memory so that it
may be recalled accurately and reliably without error, the task then becomes
to actually apply the memorized scheme to generate passwords for multiple
accounts.

For our human computability model, we adopt the assumption, which is
one often referenced psychology and neuroscience, that a person’s memory span
(also known as digit/character span) is ∼5 items long. Functionally, short-
term memory span measures the number of discrete units over which a user can
successively distribute his attention and still organize them into a working unit.

We thus analyze the computability of a password scheme – its short-term
memory burden – as the number of ”entities” (concretely, these will be digits,
characters, or arithmetic operations) that must be streamed into the user’s short
term memory span, with the restriction that the memory span cannot store more
than 5 items at any point during the computation. If executing an instruction
of the password generation scheme would cause the number of items stored in
the user’s memory stream to exceed the memory span limit of 5, then a value
already stored in the memory stream must be discarded (if that value is needed
later, it must be recomputed, exhausting more stream characters).

One might imagine the analogy of computing with a fixed-size register of 5
bytes on a computer to conceptualize this framework.

The metric that models the expected computation time (CT), or short-term
memory burden, of a scheme will be calculated as the total number of memory
stream characters needed to compute a password, averaged a across standard
collection of common online accounts (e.g. of the top 50 most frequently used
Internet sites):

CT =

∑
a∈AMS5(a)

|A|
,

whereA is a representative set of challenges (i.e. account names like {gmail, amazon, facebook, . . .}),
and MSi(a) is the number of of memory stream characters needed to generate
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a password for account name a with memory span limit i (we will use i = 5 for
our analyses).

A higher CT score thus indicates that a password scheme is less desirable
in terms of computational burden.

4.3 Self-rehearsability

Another desirable property of human-usable password generation schemes that
we include in our memorability analysis is self-rehearsability. This metric at-
tempts to characterize how easy is it to recall instructions or character mappings
from long-term memory that are less frequently used.

For a scheme with high self-rehearsability, we desire that during the process
of computing passwords for commonly-used accounts, each discrete instruction
of the password generation scheme is rehearsed often enough so as to be more
easily recalled from long-term memory when required for less frequently used
accounts.

For a given password generation scheme g, let its instruction set be Ig. For
each distinct instruction i ∈ Ig, let the variable Xa(i) denote the number of
times instruction i needs to be executed to compute the password for account
a.

Similarly, for each data value d ∈ D comprising the user’s private key, let
Xa(d), be the number of times that d needs to be accessed in the process of
computing the password for account a.

We will define

SRg = stdev({Xa(i)}a∈A,i∈Ig ) + stdev({Xa(d)}a∈A,d∈D),

with a sampled from a representative set of account names A. Note that the
stdev’s (standard deviations) of the variables Xa(i) and Xa(d) are computed
across all instructions i ∈ Ig of the password generation scheme’s instruction
set, and all data values d ∈ D of the user’s private key, respectively.

The standard deviations of the variables Xa(i) and Xa(d) will be low if all
instructions and data values are utilized roughly equally across different account
names, hence enhancing self-rehearsability. Conversely, the standard deviations
will be high if certain instructions or data values are used significantly more
frequently than others, hence deterring self-rehearsability.

A higher SR score thus indicates that a password scheme is less desirable in
terms of self-rehearsability.

4.4 Aggregating the Metrics

An aggregate metric for the memorability burden of a password generation
scheme g, will be calculated as the weighted sum of (i) PT (pre-processing
time, or long-term memory burden); (ii) CT (computation time, or short-term
memory burden); and (iii) SR (self-rehearsability burden). For example, sup-
pose we value low short-term memory burden in a password generation scheme
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twice as much as the other metrics. We might choose an aggregate memorability
burden metric of:

Mg = cPT ·PTg + cCT ·CTg + cSR · SRg,

where cPT = 0.25, cCT = 0.50, and cSR = 0.25. Mg measures the memorabil-
ity burden of the password generation scheme g, so higher values indicate less
desirable schemes.

5 Cryptographic Security Analysis Framework

To account for the challenge of creating passwords for multiple sites, the security
analysis of the schemes consider the following two attacks: offline attack, similar
to the definition in [6], and random challenge attack, as defined in [8].

In the offline attack model, the adversary is given only the hash hp of the
user’s password p, and the hash function h, such that h(p) = hp. We will
measure the security in offline attack model by the number of guesses q the
adversary needs to recover the user’s password p′, such that h(p′) = hp. This
model measures how strong a single password produced by the analyzed scheme
is.

In the random challenge attack model, the adversary is given the password
scheme, f , all the stored information (i.e. not memorized information) for com-
puting a password, and Q randomly sampled pairs of scheme input ci, and
scheme output pi = f(ci). We will measure the security in random challenge
attack model by the number of random samples Q for the adversary to success-
fully recover a password p′ for a new random input c′. This model measures
how robust the password scheme f is against random password leaks. Note
that we consider only randomly sampled pairs, instead of the adaptively chosen
ones, similar to [14]. Since in the real word, adversaries generally depends on
weakness of websites to gain information of user’s passwords. It is more useful
to model such breaches as random events not controllable by an adversary. Also
in the real word, most websites have the mechanism of limiting the number of
tries one can use to authenticate. For example, if the adversary gives 10 wrong
passwords, the user may be notified through email and change his password
accordingly. Therefore, in the random challenge model, we measure Q by the
number of random pairs (ci, pi) an adversary needs to compute p′ for a random
c′, within 10 tries.

6 Our Proposed Password Schemes

6.1 Parameters

Our proposed password scheme requires memorizing an English sentence plus
a random letter to digit mapping. One way to generate the random English
sentence is to select a random sentence from a random English book (e.g. by
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using [18]). If the sentence is too short, it can be concatenated with the next
sentence in the book until it reaches a minimum length. A random letter to
digit mapping can be generated by picking an integer from 1 to 10 (inclusive)
uniformly at random for each letter ”a” through ”z”. We use 1 to 10 instead of
0 to 9 because our scheme requires nonzero values.

6.2 Function

To use our scheme, we first take the site name and convert it to lowercase letters.
Numbers are spelled out in English, and non-alphanumeric symbols are ignored.
For example, ”A9” would become ”anine”. We then repeat the site name as
many times as is necessary to reach 12 letters, and apply our letter to digit
mapping to obtain 12 digits.

We first process our sentence in the same way (coverting to lowercase,
spelling out numbers, removing non-alphanumeric characters like punctuation).
Then, for each digit, we count forward that many characters in the sentence
and output the corresponding character as a letter in the password. This is
a streaming algorithm and does not require random access, so it is easier to
perform these operations mentally. If we run out of characters in the sentence,
we wrap around to the beginning (equivalent to having the sentence repeated
as many times as necessary).

6.3 Example

An example is probably the easiest way to understand the scheme.
Let’s say our letter to digit mapping maps ”a” to 1, ”m” to 2, ”z” to 4, ”o”

to 3, and ”n” to 6, our sentence is ”mary had a little lamb”, and the website
we’re trying to log into is Amazon. The steps in creating the password are
shown below:

1. Amazon

2. amazonamazon

3. 1 2 1 4 3 6 1 2 1 4 3 6

4. mary had a little lamb mary had a little lamb

5. mryatmbardia

6.4 Using in Real Life

One concern is that our password scheme generates passwords that are all low-
ercase, but most websites these days require at least one lowercase letter, one
uppercase letter, one digit, and one special character. This is not a problem. We
can simply append a fixed string (such as ”A2@”) to the end of our password to
satisfy these requirements. This might not improve the security of our scheme,
but it certainly won’t decrease the security.
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7 Results

7.1 Usability

We will call our proposed password scheme ES12, because it uses English Sen-
tences and is 12 characters long. The scheme that we did user testing on is
almost the same, except that the length of the password is the length of the site
name, instead of always 12 characters long. We call this variant of our scheme
ES. Of course, ES12 would take longer to compute than ES and would be more
secure, but otherwise the conclusions about ES would apply to ES12 as well.

To test ES, we would ideally have a randomized sample of users. However,
because students are extremely busy at this time of year, we were not able to
get other students to test our scheme. Thus, we tested the scheme on each of
the 3 authors of this paper.

For purposes of the questionnaire, the benchmark scheme we compared our
scheme to is the WS1 scheme from [7]. WS1 is a scheme that asks the users to
memorize 26 random words. To compute the password, the user takes the first
4 distinct characters in the site name, and for each character outputs the first
2 consonants in the random word beginning with that character.

The data that we gathered from our usability tests and the conclusions that
we drew are summarized below:

7.1.1 Questionnaires

Below are the adjusted ratings for the pre-test questionnaire, post-test ques-
tionnaire, and difference between the pre- and post- test questionnaire ratings.

Category Pre-Test R′i Post-Test R′f ∆ = R′f −R′i Ro =
R′

i+2R′
f

3

Goodness +0.333 +0.000 −0.333 +0.111
Likely to use +0.333 +0.000 −0.333 +0.111
Security +1.000 +0.667 −0.333 +0.777
Ease of use −0.667 −1.000 −0.333 −0.888
Memorability −0.667 +0.000 +0.667 −0.222
Flexibility +0.667 +0.000 −0.667 +0.222

As shown by the post-test questionnaire, the users of our scheme felt it
ES was more secure but less easy to use than WS1. After actually using our
scheme, the ratings for each category fell, except for memorability, which rose.
The overall rating, which is a weighted average of the pre-ratings and post-
ratings, is positive (better than benchmark) for goodness, likelihood of use,
security, and flexibility, but negative for ease of use and memorability. Again,
security is the main benefit of ES, while ease of use is the main drawback.

7.1.2 Preprocessing Time

The Preprocessing time had a mean and standard deviation of

µ = 62.000, σ = 19.950
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This Preprocessing time is reasonable and comparable to that of [7]. Spend-
ing an hour to remember a password scheme is very doable, since you only need
to do it once. Once you remember the scheme, you automatically rehearse it
through computing the passwords to your accounts.

7.1.3 Processing Time

The Processing time had a mean and standard deviation of

µ = 73.356, σ = 29.677

The Processing time is the main usability concern with ES, our proposed
password scheme. It is more than twice as long as the slowest password scheme
in [7], and about 10 times as long as WS1, our benchmark scheme. Thus,
Processing time seems to be the main drawback for ES, as real users are unlikely
to be willing to spend over a minute to compute and type out a single password.

In the data above, it is interesting to note that although longer passwords
tend to have longer processing times, there is actually a lot of variance in pro-
cessing time for passwords of the same length.

7.1.4 Memorability

In the followup test that we conducted 1 week after the initial test, it took one
of the users 136 seconds to recall the scheme correctly, while the other two users
remembered the sentence but forgot the letter to digit mapping.

After reviewing the letter to digit mappings, all three users were able to get
an empirical memorability of 1 for every account; that is, they were able to
correctly compute the passwords for each site name.
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What was interesting was that the users had different ways of memorizing
the letter to digit mapping. One of the users simply memorized the 26-digit
string composed of the digit mapped to ”A”, followed by the digit mapped to
”B”, etc. Another user memorized the same 26-digit string, but in chunks of
5 digits each. The final user memorized the inverse digit-to-letter mapping,
remembering the mapping by associating letters to the digit and to each other
(for example, if ”G”, ”I”, ”M” map to 6, the user remembered that ”G” looks
like 6, and that ”G” was part of ”IMG”). This user was also the only one to
still remember the letter to digit mapping after 1 week.

We also measured the Processing time for each account’s password. The
Processing time had a mean and standard deviation of

µ = 77.767, σ = 33.646

This means that the Processing took a few seconds longer than a week ago,
and had slightly more variance, which seems reasonable given that the users
did not use the scheme at all within that week between the initial and followup
tests.

As you can see in the chart, the Processing times in the followup test follow
roughly the same trend and pattern as the Processing times in the initial test.

7.1.5 Flexibility

The Preprocessing time had a mean and standard deviation of

µ = 50.333, σ = 3.682

This is good news for ES. The average Preprocessing time was more than
10 minutes shorter, and the variance decreased significantly. This shows that
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ES is flexible enough to allow users to switch over to new parameters. Instead
of having the old and new parameters interfere with each other, we found that
having used ES before makes it easier to use ES with a new set of parameters
because the user will have had practice using the scheme and perfecting their
memorization and computation tricks.

7.2 Memorability

7.2.1 Long-term Memory Burden Analysis

Our proposed scheme requires the user to commit to memory a secret letter-to-
digit mapping of 26 chunks, as a well as a randomly chosen sentence of roughly
20 words in length (due to the structured nature of sentences, we assume that
each word in our sentence constitutes a single chunk). The total number of
chunks of private data values a user must commit to long-term memory is thus
D ≈ 26 + 20 = 46.

The number of distinct instructions that need to be committed to mem-
ory can be estimated by the number of number of lines of pseudocode needed
describe the password generation schema.

1. Repeat letters of the account name until it is 12-letters long.

2. For each letter, retrieve the memorized letter-to-digit mapping.

3. Advance this many indices in the memorized sentence.

4. Output the resulting letter as the next letter of the password.

Thus, we use I = 4 for this schema.
Applying these values the model described in Section 4.1, our framework

estimates the expected number trials needed to recall the scheme without error
is

PT = (1− δ)(−I−D),

where δ is the probability of independently mis-remembering any single
chunk. Since we were unable to determine a suitable value for δ empirically, we
can use δ = 0.05 in a sample calculation and evaluate PT = (1− 0.95)−46−4 =
13.0 for our scheme.

For comparison, the WS1 scheme presented in [7], which only requires the
user to memorize a 26-chunk letter-to-word mapping (D = 26), and also has a
public instruction set size of I = 4, would have a long-term memory burden of
PT = (1− 0.05)−26−4 = 4.66

Thus, under a δ value of 0.05, the long-term memory burden of our scheme
is roughly 2.5 times as large as the benchmark scheme, i.e. requires roughly
2.5 times as many trials to commit to long-term memory than the benchmark
scheme.
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7.2.2 Short-term Memory Burden Analysis

To perform a short-term memory burden analysis of our scheme (i.e. to charac-
terize the processing time of computing new passwords), we do accounting on
the number of chunks of data values that need to streamed into a user’s memory
span for computing each letter of the password:

• 1 chunk to store pointer into site name

• 1 chunk to store value of corresponding digit mapping for that letter

• 1 chunk to store the identity of current word in the sentence,

• 1 chunk to store moving index in the sentence

• 1 chunk to store output letter

Thus, assuming a human memory span of 5 chunks, each letter of the pass-
word is computable without recycling any characters out of memory stream.
The total short-term memory burden our scheme is therefore 5 · k, where k is
the number of letters in the output password. Since our scheme pads all account
names to 12 characters in length, computing passwords with our scheme incurs
a constant short-term memory burden of 60 for all accounts.

For comparison, the benchmark WS1 scheme from [7] incurs a short-term
memory burden of 4 ·k, where k is the number of letters in the challenge account
name. Unlike our scheme, WS1 does not pad or truncate password challenges
to a constant length. For most account names (with k < 15), the benchmark
scheme would achieve a lower short-term memory burden than our scheme.

7.2.3 Self-rehearsability

It turns out that the self-rehearsability of both our scheme and the benchmark
scheme relies solely on the distribution of letter frequencies in common account
names - i.e. the frequency with which a single letter-to-digit or letter-to-word
mapping is rehearsed, is proportional to the corresponding letter’s occurrence
frequency in the set of sampled account names. Thus, a self-rehearsability
analysis would be identical for our scheme and the WS1 scheme of [7].

7.3 Security

In the offline attack model, the adversary needs to check all possible passwords
and match them to the hash. Suppose the dictionary contains L different let-
ters, since the repeated letters don’t necessarily corresponds to same password
characters, the password space is simply L12. That is, an adversary needs to
try L12 times to recover the password in the offline attack model.

In the random challenge attack model, we empirically measure the security
by playing the following game: for a give Q
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• The challenger randomly chose a secrete s sentence from the dictionary
D, and a random mapping σ from letters to digits.

• The challenger send the adversary a randomly chosen domain name c′,
and Q pairs of randomly chosen domain names, and their corresponding
passwords (ci, f(s, σ, ci).

• The adversary provides 10 guesses of the password for c′, P ′ = p′1, ...p
′
10.

If f(s, σ, c′) ∈ P ′, the adversary wins.

We measure the possibility r of an adversary winning the game for Q by running
50 such games per group, and then calculate the average of 20 groups ravg. The
results for several different configurations of the scheme are shown in Table 1-4.

Q ravg std
10 0.57 0.063
12 0.64 0.072
14 0.72 0.066
16 0.74 0.069
18 0.82 0.048
20 0.83 0.063
22 0.83 0.067
24 0.88 0.046

Table 1: Measured Q using Hamlet as
dictionary D, and |s| ≥ 10

Q ravg std
10 0.54 0.077
12 0.66 0.059
14 0.71 0.085
16 0.78 0.050
18 0.80 0.046
20 0.83 0.059
22 0.86 0.035
24 0.87 0.051

Table 2: Measured Q using Hamlet as
dictionary D, and |s| ≥ 15

Q ravg std
10 0.544 0.063
12 0.661 0.063
14 0.745 0.048
16 0.775 0.069
18 0.825 0.062
20 0.84 0.049
22 0.857 0.050
24 0.889 0.045

Table 3: Measured Q using Hamlet as
dictionary D, and |s| ≥ 20

Q ravg std
10 0.53 0.062
12 0.62 0.082
14 0.70 0.074
16 0.78 0.051
18 0.80 0.049
20 0.80 0.066
22 0.82 0.047
24 0.86 0.039

Table 4: Measured Q using Hamlet,
and King Lear as dictionary D, and
|s| ≥ 10

In the empirical evaluation, we tried first using Hamlet as the dictionary
D to choose random sentences from. In case of the sentence being too short,
we concatenate consecutive sentences until it has a length of minimum 10. The
result of this configuration is shown in Table 1. We next tried several variations:
we used a larger dictionary, as shown in Table 4, choosing sentences from both
Hamlet and King Lear; and we used different sizes of sentences as the secrete
s. As shown in Table 1-3. However, none of the variations have much effect on
the security of the scheme.
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This is because each sentence only contains a very limited set of characters,
and it’s very easy for an adversary to recover the secrete sentence s by testing
if a sentence contains all the provided passwords pi’s as a subsequence. In our
testing cases, the adversary can easily limit the possible sentences to around
3 by the simple subsequence test. On the other hand, the scheme still has
good security because the random mapping σ is hard to recover. In our testing
cases, we used 1-consistency checking to eliminate the impossible mappings. For
example, consider the ith character in a provided website name, password pair
c, p: we first rotate the recovered sentence s so that p[i−1] matches the first letter
of the rotated sentence s′. And then add possible mappings σ(c[i]) = n such
that s′[n] = p[i], and eliminate the impossible ones. We call this 0-consistency
checking since every time it only check the constrains for a single letter and
ignores the rest in the website name. In the next iteration, we consider all
the remaining possible mappings for c[i], and checks the mappings for c[i + 1]
and c[i − 1]. We call this 1-consistency checking since every time it considers
one pair of constrains, and therefore can eliminate more impossible mappings.
The actual possible mappings after n-consistency checking can be smaller than
we recovered in the empirical evaluation, so the actual rate of success may be
slightly higher than our listed result. However, the difference is not be large,
since the difference between 0-consistency checking and 1-consistency checking
is already very small.

In comparison, the proposed scheme has better security compared to the
scheme WS1 in [7], which, in a similar evaluation described in the paper, has
7 ≤ Q ≤ 8 for the adversary to get 90% success rate.

8 Comparison to Existing Schemes

In the Results section, we compared our proposed scheme, ES12, with the
benchmark scheme, WS1 from [7]. We found that the security was higher
than WS1, and the ease of use was lower. In terms of memorability, the long-
term and short-term memory burden of our scheme was slightly higher than the
benchmark, and the self-rehearsability was identical to benchmark.

Overall, we found that the amount of information memorized is not unduly
large, as shown by our reasonably short preprocessing times. The letter to digit
mapping requires remembering 26 pieces of information, but so does all of the
schemas in [7], which require memorizing either a letter to digit mapping, a
permutation, or a collection of 26 words. We found that the English sentence
was easy to remember and that the letter to digit mapping was the bulk of the
memorization work.

The security is better than the schemas in [7], since the security of ES12 is
higher than WS1, which had the highest security in [7] (excluding the multi-
map schema, which just consists of deterministically choosing one of several
schemas based on the site name, then applying it).

The main drawback is the processing time, and thus ease of us, of ES12,
which is several times slower to compute than even the slowest schema in [7].
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We think that this is partly due to the large number of operations used in
ES12, and partly due to our lack of experience in doing mental computations
and memorization. If we were as experienced as the authors of [7], we would be
able to compute our passwords faster. The long computation time may not be
as large a handicap as it seems, however. A user’s most common passwords will
be typed so often the user will remember them by heart; it is only the lesser
used passwords that need to be computed.

Overall, we think that our proposed scheme, ES12, is a reasonable scheme
to use - as long as you don’t mind spending a minute to compute your password.

9 Conclusion

In this paper, we first surveyed existing works that address the challenge of cre-
ating memorable passwords for multiple accounts. Combining the results from
[7] and [8], we propose a comprehensive frame work to evaluate password scheme
for systematically creating strong passwords for multiple accounts. The frame-
work evaluates the usability of a scheme by conducting experiment on volunteer
users. We collect data of the time it takes for each user to remember and cor-
rectly apply the scheme, and also collect their subjective feeling of the scheme’s
security, usability, and flexibility. The framework evaluates the memorability
of a scheme using a theoretical model of human memory. It breaks down the
scheme into chunks of information that needs to be stored into long term mem-
ory, and a set of algorithms that is runnable completely in a person’s head. (i.e.
without using a computer, or even pencils and paper.) The framework finally
evaluates the security of a scheme by considering two possible attacks based on
real world events. In the offline attack model, the attacker guesses a password
by matching it’s hash value stored on the server. In the random challenge at-
tack model, the attacker is first given a set of valid password, and then asked
to guess a password of a random account. We then propose a novel variation of
the schemes from [7]. We run this sample scheme through our framework, and
shows that it out performs the schemes from [7] in the security framework, and
also has a slight advantage of usability, while memory burden is a little higher
than the bench mar.

There are also limitations of our work. Our scheme always produces pass-
words of the same security, but sometimes, a user may want to sacrifice memo-
rability for better security, for their important accounts. It would be desirable
to have a scheme that support multi-level security and memorability. Also, our
analysis framework is also limited to text-based password schemes, similar to
those from [7]. It is desirable to extend it to also support other types of password
schemes, such as graphical passwords, and biometric passwords.
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