
Fast Bulk GCD Implementation in Go to Detect
Shared Primes in RSA Keys

Best Secr-ity Team: Siqi Chen, Yunfei Lin, Connie Siu, Elise Xue

Massachusetts Institute of Technology

Abstract. The purpose of this project, proposed by Let’s Encrypt, is to
implement a very fast bulk GCD computation for RSA keys in Go, so that
it would be possible to identify weak RSA keys at request time. Using
Bernstein’s quasi-linear bulk GCD algorithm [Ber08], we obtained RSA
moduli with shared primes. Throughout the course of the project, we
performed multiple optimizations on our algorithm, eventually being able
to identify weak keys amongst millions of RSA keys within a reasonable
amount of time.

Keywords: RSA, Weak RSA Keys, Bulk GCD Algorithm

1 Introduction

The effectiveness of RSA depends on the difficulty of factoring the two primes
that make up the RSA modulus. If an adversary can retrieve the primes from
the RSA modulus, then he can easily decrypt the data. One weakness of RSA is
that some of the RSA keys currently in use share prime factors. These keys are
particularly vulnerable - if an adversary can factor one of the RSA moduli, he
can easily factor others that share the same prime.

For this project, we implemented a fast bulk GCD computation for RSA keys
in Go, and constructed a set of known weak RSA keys from the 4.3 million RSA
keys collected. In this way, Let’s Encrypt, a new certificate authority launched
in 2016, can test and reject weak keys at request time.

2 Background

2.1 RSA

RSA is a cryptosystem that encrypts sensitive data to send over the Internet.
It uses a public key, which is shared with everyone, to encrypt messages, and a
private key, which is only known to the receiver, to decrypt the data. The RSA
keys are also used to digitally sign and verify messages.

The key generation step in RSA involves randomly generating two distinct
large primes p and q, by the Rabin-Miller primality test algorithm, and comput-
ing the modulus n = pq as the public key. Then, it finds an exponent e that is
relatively prime to (p− 1)(q− 1), the totient of n, as the second public key. The
private key d is the multiplicative inverse of e with respect to (p− 1)(q − 1), as
determined by the Extended Euclidean algorithm.



2.2 Shared-Prime in RSA Moduli

Many RSA keys are currently in use in the Web. The two prime factors used in
the RSA modulus are created using a random prime number generator. However,
if the implementation of this generator is incorrect (e.g. the prime numbers are
generated with low entropy), keys with common prime factors may be generated.
In fact, some keys collected from the Web do share prime factors. These keys
are called weak RSA keys [FNI15].

According to Ron was wrong, Whit is right [LHA+12], among the 4.7 million
distinct 1024-bit RSA moduli the authors collected, 12720 of them shared prime
factors with some other moduli. The trend seems to stay: in their more recent
collection of 11.4 million RSA moduli, there were 26965 weak keys, including ten
2048-bit ones.

Weak RSA keys are vulnerable to attacks. Suppose that there are two distinct
public keys (nA, eA) and (nB , eB), and that gcd(nA, nB) 6= 1. Since nA and nB
have only two distinct prime factors, gcd(nA, nB) is one of the secret primes of
both keys, then the attacker can easily find the other secret primes by calculating
nA/ gcd(nA, nB) and nB/ gcd(nA, nB). With the secret keys, the attacker is able
to decrypt any transmitted messages and send malicious messages by pretending
to be the sender.

2.3 Existing Models for Detecting Weak RSA Keys

The naive way to detect weak RSA keys is to factor the RSA moduli. However,
even with number field sieve, the fastest known factoring method, it would take
thousands of years to factor one million RSA keys [KAF+10].

Finding pairwise GCD is efficient, which takes O(n2) for each n-bit num-
ber pair. With fast integer arithmetic, the complexity of pairwise GCD can be
improved to O(n(log n)2 log log n) [Ber08]. Using the GMP library, computing
the GCD of two 1024-bit RSA moduli takes approximately 15 µs on a current
mid-range computer. Hence, to find weak keys among one million RSA keys, it
would take 86 days to finish the calculation of 5 ∗ 1011 pairwise GCDs.

A faster way is to find weak RSA moduli by computing the GCD of many
pairs of RSA moduli. To achieve this, Fujita, Nakano and Itomay [FNI15] pre-
sented Approximate Euclidean algorithm, a faster Euclidean algorithm for find-
ing the GCD between all pairs of RSA moduli. The algorithm computes an
approximation of quotient by just one 64-bit division and uses it for reducing
the number of iterations of the Euclidean algorithm. The experimental results
showed that the GPU implementation based on Approximate Euclidean Algo-
rithm is more than 9 times faster than the best known published GCD compu-
tation using the same generation GPU.

Heninger, Durumeric, Wustrow and Halderman [HDWH12] adopted Bern-
stein’s quasi-linear bulk GCD algorithm [Ber08] and were able to detect weak
keys among the 11,170,883 distinct RSA moduli in around 60 hours using a sin-
gle core on a machine with a 3.30 GHz Intel Core i5 processor and 32 GB of
RAM.

2



3 Implementation

3.1 Access to RSA Keys

Nadia Heninger recommended us to obtain the RSA keys from Censys.io, a search
engine that enables researchers to look up information about hosts and networks
on the Internet. Censys.io has a Data Export Tool that allows us to export
large amounts of data using SQL. We used the query select parsed.subject

key info.rsa public key.modulus from certificates.certificates to find
the modulus of the RSA public keys. The result gave us 500 CSV files, which
totaled to 980 GB. Since we do not have 980 GB available on our computer,
we decided to take the first 13 files for this project. After removing duplicate
moduli, we were left with 4.3 million distinct RSA moduli of various lengths.

3.2 Algorithm for Efficiently Computing All-Pairs GCDs

Daniel J. Berstein [Ber08] introduced a quasilinear bulk GCD algorithm that
efficiently computes the GCD between each element and the product of all ele-
ments. The algorithm involves a product tree and a remainder tree.

As shown below, the algorithm starts out by generating a product tree in-
volving all of the k RSA moduli. Each moduli is multiplied pairwise with another
moduli, generating a node in the next level of the tree. This ultimately constructs
a binary tree of products with the root node being the product of all the input
moduli.

Fig. 1: Product tree

3



A remainder tree is generated using the product tree. The root node’s value
is the product of all of the input RSA moduli. As we work down the tree, each
node takes the value of the parent modulo the square of the corresponding node
in the product tree. This continues for all of the nodes in the tree.

Fig. 2: Remainder tree

Taking the values stored in the leaf nodes, we divide them by the corre-
sponding RSA moduli, then take the resulting quotient and calculate the GCD
between that value and the corresponding RSA moduli. If the GCD is not 1 (i.e.
the two numbers are not relatively prime), we have managed to factor the RSA
moduli and denote that key as weak.

Fig. 3: Computing bulk GCDs

4



3.3 Go Implementation of Bulk GCD

Generating Product Tree Our algorithm takes in a file of newline separated
RSA moduli in the hex form and processes them into an array of integers, which
is stored in the file “p0.txt”. Every two integers in the array are then multiplied
together and the product is put into a second array of products. When this second
array representing a new “level” of the product tree is completed, it is then
written to a text file labeled with “p” and the level number. After log k levels,
the log kth product file contains the product of all the RSA moduli multiplied
together.

Generating Remainder Tree We start by reading log kth product file, which
contains final RSA product. We will call this product N . We then read in the
file for the log k − 1 product level. Then, for each product that represents a
“child” of the previous node (the node containing N), we take the result of N
modulo the product squared and append that to a remainder list. When all of
the remainders for that level are calculated, the array representing that level
is written to a text file labeled with “r” and the level number (level number
corresponds to the level in the product tree). The leaves of the remainder tree
are thus written to “r0.txt”.

Calculating GCD We use the values inside of “r0.txt” for the final step of the
algorithm. The value of each leaf of the remainder tree is first divided by the
corresponding RSA moduli in “p0.txt”. We then take the GCD of the result-
ing quotient and its corresponding RSA moduli. If the GCD is not equal to 1,
we know that the key is weak. The weak RSA moduli are written to “vulnera-
ble.txt”, and the non-trivial GCDs are written to “gcds.txt”.

Computational Complexity Our code utilizes a fast arithmetic library for
operations on large integers (we will describe this library in details in the next
section). For an input with k n-bit integers, this algorithm’s computational com-
plexity is O(kn log k log (kn) log log (kn) for the product and remainder trees and
O(kn(log n)2 log log n for calculating GCDs.[HDWH12]

3.4 Optimizations

GMP We started out using Go’s “math/big” library for big number operations
in our code. However, this library is comparatively slow to the GNU Multiple
Precision Arithmetic library (GMP) in C. We found an implementation of GMP
in Go1, which provided methods that were almost one-to-one substitutions of the
operations in “math/big”. The GMP library was thus very easy to integrate into
our code, and we saw significant improvements in our runtime compared to when
we used “math/big”. We ran into problems because the big integer datatype in

1 Repository for this library can be found at https://github.com/ncw/gmp

5

https://github.com/ncw/gmp


the GMP Go library is not copy-safe, but this problem was remedied by changing
how some of our datatypes were implemented. This issue has been reported to
the author of the Go library and is in the process of being patched.

Multi-Processing One important feature of Go is concurrency. Using gorou-
tines and channels, many operations can be performed concurrently. Our initial
thought was to take advantage of concurrency and generate a goroutine for every
RSA key multiplication in the product tree. This way, all the multiplications will
be performed concurrently, and same goes for the modulo operations in the re-
mainder tree. But after we successfully converted to multi-processing, we found
that the runtime reduced by only a small amount. After careful research, we
realized that our implementation with multiple goroutines only ensured concur-
rency, not parallelism. Parallelism occurs when operations are running at the
same time, but it is limited by the number of CPUs a machine has. Concurrency
here ensures that if parts of a program are running on different threads, then the
order of execution does not affect the final result. Since the most recent version
of Go already sets the number of CPUs to use to be the number of CPUs on the
machine, adding goroutines increases the number of threads, but cannot make
all of them run in parallel. Therefore, we stopped using goroutines since we saw
no improvements to our runtime.

4 Challenges

4.1 Fast Big Number Arithmetic

The implementation we referenced in Heninger et al.’s paper used C’s GNU
Multiple Precision Arithmetic library (GMP) to do arithmetic on large integers
very quickly. Because Go does not have a standard GMP library, we started
out using the “math/big” library to perform these operations. Since C’s GMP
library has been developed over many years, it is optimized to be very precise
and fast. Fortunately, we found an implementation of the GMP library in Go,
which significantly improved our runtime, even though the Go library is still
undergoing development.

4.2 Storage/Processing Power

Implementations of the bulk GCD algorithms in literature often use high pro-
cessing power machines with parallel computing architectures. Since we write
to disk multiple times during our algorithm’s implementations, we quickly run
out of disk space on our own machines. We have taken the TA’s advice in using
Google Cloud Platform2 to acquire some computing power and storage, but the
free trial only had access to a limited set of features (unfortunately, this feature

2 For more information about Google Cloud Platform, see https://cloud.google.

com/

6

https://cloud.google.com/
https://cloud.google.com/


set excluded GPUs), and we were not able to acquire enough storage to run
the algorithm on the full dataset. We also did not have the hundreds of dollars
needed for a decent machine with GPUs.

4.3 C Implementation

Heninger et al.’s paper provided a C implementation of their bulk GCD algo-
rithm, also based on Bernstein’s GCD algorithm. They used an older version of
GMP (ver 5.0.5) in addition to patched versions of GMP methods, which dif-
fers from our Go implementation because they were working with the native C
code. We wanted to compare the performance of our Go implementation with
their version. However, due to their GMP patch, we ran into many problems
when building their code and could not compare their runtimes with ours. We
contacted the paper authors about this issue, however, they reiterated that they
are not providing technical support for their code.

5 Algorithm Performance and Contributions

5.1 Performance

The runtime analysis on our implementation running on multiple datasets is
shown in Table 1. In almost all cases, we performed significantly better than the
naive pairwise GCD algorithm for bulk GCD.

Time for Bulk GCD Algorithms to Run to Complete

Pair-wise
GCD using
GMP

Bernstein’s
Bulk
GCD with
math/big

Bernstein’s
Bulk GCD
with GMP

200 128-bit
moduli

20ms 974ms 291ms

10000 128-
bit moduli

50s 4m59s 14s

5000 2048-
bit moduli

3m14s 5m1s 15s

100000
2048-bit
moduli

41h40m 26h 10m05s

Table 1: Runtime comparison for bulk GCD algorithms on varying numbers of moduli
and moduli sizes.

7



The runtime for pair-wise GCD with GMP was estimated from data in the
GMP documentation and work done by Granlund et al.[Gra]. Since pairwise
GCD is calculated assuming an ideal machine, the runtime seems fast for a
naive implementation compared to Bernstein’s algorithm. However, the naive
implementation does not scale well and Bernstein’s GCD algorithm performs
significantly better with larger inputs. We also include comparison with our
initial implementation with Go’s “math/big” library, to emphasize how our im-
plementation was significantly optimized after switching to GMP.

Due to the limit on GMP’s maximum integer size (231 bytes ≈ 2.15 GB), the
algorithm cannot handle an input file with size larger than 500 MB, otherwise,
the product of all RSA moduli exceeds 1 GB, and to perform the remainder tree,
GMP needs to allocate more than 2 GB of memory. Thus, we divided the 4.3
million RSA moduli into eight files each with 500,000 moduli and a ninth file
with 315,000 moduli. Meanwhile, because we separated the keys into different
files, all the weak keys we extracted are those that share prime within a file, but
not across all input RSA moduli. This is why the number of weak RSA keys we
found is significantly smaller than the previous research (85,988 weak RSA keys
among 11,170,883 distinct RSA moduli) [HDWH12].

Running our algorithm on the nine moduli files (with 4.3 million RSA moduli
in total) took approximately 10 hours on a 4-core machine with a 2.60 GHz Inter
Core i7 processor and 16 GB of RAM, and we were able to extract 819 weak
factorable RSA keys.

5.2 Key-Check Service

Using the 819 weak factorable RSA keys, we created a key-check service. Our
key-check service takes in a RSA modulus and its encoding (e.g hex or decimal).
It checks the provided key against our set of known factorable keys by computing
pairwise GCDs. However, due to the limited size of the collected factorable keys,
we cannot guarantee that a provided key is safe, but we can immediately identify
keys that share a prime with the factorable keys we collected.

6 Future Work

6.1 Patching Go’s GMP Library

If we were to eventually read in all 4.3 million (and possibly more) RSA keys
at the same time, we would inevitably run into GMP’s maximum size limit for
it’s raw-integer I/O format (231 bytes). We would therefore have to patch the
library to handle larger numbers.

Once we patch the GMP library, the algorithm should be able to handle
input file of any size. Running the algorithm on 4.3 million (and possibly more)
RSA keys at the same time will generate a lot more weak keys, with which the
key-check service will achieve a better performance at recognizing weak input
keys.

8



6.2 Increasing Computation Power

Running the code on our local machines on the millions of RSA keys was in-
efficient and costly in terms of storage and CPU power. Using the free trial of
Google Cloud Platform also was not as fruitful as anticipated. In the future, with
enough resources, we would like to optimize the performance of our algorithm
on even larger size datasets by utilizing GPUs, increasing the number of cores
used, and other general improvements to computation power. We will also need
adequate storage space needed for all of our generated files if we were to run to
the full dataset.

7 Conclusion

We implemented a fast bulk GCD computation algorithm for RSA keys in Go
and generated a set of known weak RSA keys. With our key-check service, we
are able to identify weak RSA keys at request time by computing pairwise GCDs
with our set of known weak RSA keys. Given more time and computation power,
we hope to create a more efficient and better performing algorithm that can take
in larger input files, and therefore generate more weak RSA keys.

8 Appendix

8.1 Repository

Our code can be found at https://github.com/eyxue/fastgcd

Acknowledgements

Our project is suggested by Let’s Encrypt in order to decrease the likelihood
of weak RSA keys to encrypt potentially sensitive information. We would like
to thank Prof. Ronald L. Rivest, Prof. Yael Kalai, and the 6.857 TAs for their
insights that influenced the design and implementation of this project. We would
also like to thank Prof. Nadia Heninger for her guidance on this project.

References

Ber08. Daniel J. Bernstein. Fast multiplication and its applications, 2008.
FNI15. T. Fujita, K. Nakano, and Y. Ito. Bulk gcd computation using a gpu to

break weak rsa keys. In 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop, pages 385–394, May 2015.

Gra. Et Al. Granlund, T. The gnu multiple precision arithmetic library.
HDWH12. Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.

Mining your ps and qs: Detection of widespread weak keys in network
devices. In Proceedings of the 21st USENIX Conference on Security Sym-
posium, Security’12, pages 35–35, Berkeley, CA, USA, 2012. USENIX As-
sociation.

9

https://github.com/eyxue/fastgcd


KAF+10. Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Em-
manuel Thomé, Joppe W. Bos, Pierrick Gaudry, Alexander Kruppa, Pe-
ter L. Montgomery, Dag Arne Osvik, Herman Te Riele, Andrey Timo-
feev, and Paul Zimmermann. Factorization of a 768-bit rsa modulus. In
Proceedings of the 30th Annual Conference on Advances in Cryptology,
CRYPTO’10, pages 333–350, Berlin, Heidelberg, 2010. Springer-Verlag.

LHA+12. Arjen K. Lenstra, James P. Hughes, Maxime Augier, Thorsten Kleinjung,
and Christophe Wachter. Ron was wrong, whit is right. Technical report,
2012.

10


	Fast Bulk GCD Implementation in Go to Detect Shared Primes in RSA Keys

