
Censorship-Resistant File Storage

David Vargas, Robert Tran, Omar Gonzalez

Summary

This project tackles the problem of designing
a file system that is resistant to censorship;
that is the deletion, alteration, or distribu-
tion of a user’s data that is hosted by a third
party. Third party and cloud hosting is get-
ting more popular, and finding ways to pro-
tect yourself against these kinds of attacks
has become ever more important. Our group
presents Storj, a decentralized peer-to-peer
file storage system that achieves this protec-
tion while also allowing for reasonable data
availability and integrity. Finally, we discuss
Storj Sync (https://github.com/rtran9/
6.857-storj-sync), a client side tool to in-
crease usability with a relatively new and
growing system.

1 Introduction

The majority of popular file storage options
today mostly involve the data owner storing
their data with a single entity, may that be
with the data owner’s own local machine or
with a cloud service providing third party
host such as Google Drive or Dropbox. It
is becoming increasingly evident that storing
all of one’s data locally is becoming infeasible
due to memory restriction and risk of hard-
ware failure or damage. So now, the question
is, is there any risk or concern for data own-
ers to store their data on cloud servicing third
party hosts?

Almost all of these services offer a central-
ized solution in the sense that a single entity
controls one’s data. When a user decides to
host their data on Google Drive or Dropbox,
they agree that this third party host now be-

comes owner of the data and all the rights
that come with hosting that data. From
Google’s own Terms of Service:

When you upload, submit, store,
send or receive content to or
through our Services, you give
Google (and those we work with) a
worldwide license to use, host, store,
reproduce, modify, create deriva-
tive works (such as those resulting
from translations, adaptations or
other changes we make so that your
content works better with our Ser-
vices), communicate, publish, pub-
licly perform, publicly display and
distribute such content. [2]

The concern with giving a third party host
control of your data in this way comes from
the fact that your data at any moment could
be deleted, modified, or given to undesirable
parties (e.g. government subpoenas) without
the approval of the data owner. This is the
problem of Censorship-Resistance: to be able
to create a file storage system where no single
location and no single entity has control over
a user’s data vulnerable to Censorship.

In this paper, our group presents a
Censorship-Resistant File Storage system, as
well as a client facing tool we built to help in-
terface with the system. In section 2, we dis-
cuss decentralized peer-to-peer networks in-
cluding other related works that are available.
In section 3, we present Storj, the decentral-
ized peer-to-peer file storage service we chose
to research. In section 4, we present the tool
we implemented to help extend Storj, a file
sync for the user. Finally, in section 5 we
discuss other future work that could help ex-
tend this system.



2

2 Decentralized Peer-to-

Peer Networks

In order to avoid having a single entity ob-
tain full control over a user’s data, our group
began to look into decentralized peer-to-peer
networks. The idea is with each node in
the peer-to-peer network being its own entity,
and no single entity having special privilege
over another, this would remove the power of
any single entity having the power to abuse
censorship over the user, making the overall
system censorship resistant.

2.1 Properties

In its simplest form, a decentralized peer-to-
peer network is one that uses many entities
(for our purposes, servers) that communicate
together to act as a single entity to its user. A
decentralized file storage network allows the
user to send their data to multiple servers
on the network, allowing for replication and
sharding of the file. In this way, if any one lo-
cation becomes corrupted or unavailable for
any reason, the user has other hosts to re-
trieve its data from. Even still, data avail-
ability and data integrity are the two hard-
est problems for decentralized file storage sys-
tems to solve, since they need to establish a
reliable protocol that allows users to retrieve
the same data they stored, as if the network
was a single machine. For our project how-
ever, not only did we want a system with
high data availability and integrity guaran-
tees, but the data also has to be stored se-
curely, private to the user.

2.2 Other Systems

In researching different systems, we came
across different related work in the field that
could have served the functionality we were
looking to achieve. Below is a discussion of a
couple of these systems.

2.2.1 IPFS

IPFS is a single file storage system dis-
tributed among all the devices in the system.
It acts as a cross between a single git reposi-
tory and the web in some ways. For example,
any user could retrieve data posted by other
users and could revert to previous versions of
data. There are many other features that the
system provides, such as strong data integrity
by use of Merkle Trees and high availability
through replicating data across the networks
that could be retrieved by use of a routing
network and distributed hash tables. [3]

Although this system satisfied the high
data availability and integrity requirement
functionality we wanted our system to
achieve, it is restrictive enough in read ac-
cess to fit our security requirement. Since this
system is aiming to replace HTTP/HTTPS,
it doesn’t do as good of a job at acting as a
private data storage center. Nonetheless, one
could imagine extending this project in such
a way that permissions could be enforced on
subdirectories to work more towards that Pri-
vate Information Retrieval goal. Even then,
servers would be able to host entire files,
which could give the machine the power to
compromise Censorship Resistance.

2.2.2 Gnutella

One of the first of its kind, Gnutella demon-
strated the utility of decentralized file shar-
ing. The Gnutella protocol allowed all nodes
running the application locally participate
with the network primarily in three ways:

• Hosting a list of local files to share across
the network

• Querying for files that exist somewhere
on the network

• Downloading files that exist somewhere
on the network from other nodes

While Gnutella was revolutionary for its
time, it is not very widely used anymore and
falters in the same way as IPFS did. Both



3

systems were created with the intent of mak-
ing data sharing easier among peers, missing
features necessary to make a data owner’s
content secure to only it’s read access from
the network. [4]

3 Storj

We then came across Storj, a peer-to-peer
cloud storage network. In the subsections
that follow, we discuss more about what Storj
is, how it performs its main API calls for its
users, and why we decided to go forward with
this system.

3.1 About

Like other decentralized file systems, Storj is
a community driven network. Nodes in the
network play one of two roles; they are either
renters or farmers. Renters are data owners
looking to store their data on the network.
Farmers are nodes that offer their devices
as storage space for anyone looking to store
data. Signing up for a Storj account is quick
and new renters are offered 25 GB of free stor-
age. Farmers have incentive to offer its extra
disk space to the network since they are com-
pensated for reliable data availability and in-
tegrity. Within each API call, Storj is form-
ing contracts between renters and farmers,
which are basically agreements that farmers
will provide the data reliably while renters
pay a very affordable fee for their service.

Storj could be downloaded through NPM
(the node package management utility) and
installed directly on the user’s machine. All
interactions with the Storj network come
through the command-line tool. Users could
create ”buckets” on their account and store
their data on the desired ”bucket”. Buckets
do not correspond to servers; they are sim-
ply an abstraction mechanism to help users
organize their data on the network.

3.2 Upload

As previously mentioned, a user could desig-
nate multiple buckets on their account, each
of which has its own bucket id. In order for
a user to upload a file to the network, they
must specify the target bucket id and the file
they want to upload.

After receiving the file, Storj encrypts the
file with the user’s public key using AES and
then shards the file into n encrypted pieces.
These shards are then each replicated and
stored on the various farmers’ nodes through-
out the network.

It is in this uploading procedure where the
strength of the system’s censorship resistance
comes through. For any given file the data
owner owns, it is split throughout the net-
work, so no single node has full ownership
of a file they don’t have proper access-rights
to. Additionally, each shard is encrypted, so
no node could read any part of a user’s data
unless they compromise the data owner’s pri-
vate key (which for each user is created by a
pass phrase).

3.3 Download

The ability to effectively encrypt, shard, and
scatter user data throughout the network
would be useless if there wasn’t an algorithm
in place to be able to reliably retrieve data
a user stores on the network. Storj provides
this capability with an API call to download
a file, as long as the user provides a bucket
id and file object id (there are also API calls
where the user could get all of their bucket id
and file id mappings).

Once Storj has received the request to
download a file for the user, it starts collect-
ing all n shards from the servers that they
were stored on upload. If any shard fails to
return or is corrupted, then Storj simply re-
quests one of the other servers that has that
shard since each shard was replicated.

Once it has a copy of each of the n shards,
it runs a Merkle Proof on the shards to verify
that the file was uncorrupted. When the file



4

was first uploaded, a salt si was saved for each
shard, and these salts are reused to calculate
H(shardi + si) to create a leaf in the tree.
Then the Merkle proof is run all the way up
to the root, and the root must be verified. Af-
ter the file has been verified, Storj combines
the shards back together to recreate the orig-
inal encrypted file. Now that the encrypted
file has been recreated, Storj could simply use
the private key stored on the client to decrypt
the file and store it on the data owner’s de-
vice. After trying out the API, we verified
that our group was able to store and retrieve
files successfully in the Storj network.

3.4 Strengths & Weaknesses

Not only was Storj able to achieve data in-
tegrity and availability on the same level
of other researched decentralized peer-to-
peer networks, it also demonstrates strong
Censorship-Resistance by having many en-
crypted shards of data throughout the net-
work. The following will be a discussions
of other strengths and weaknesses we found
with this distributed file storage.

3.4.1 Strengths

Besides the censorship-resistance property,
Storj is also resistant to a number of other
types of cyber security attacks.

• Identity Hijacking - The threat of a node
stealing/mimicking another user’s node
id. This attack is well protected by re-
quiring the user’s passphrase on every
API call to the Storj network. Since
the adversary will not have the user’s
passphrase, the adversary cannot access
any of the user’s content.

• Sybil - The threat of a large number of
nodes in the network colluding to disrupt
the network, say by dropping messages
or sending malicious ones. This attack
is well protected by replicating informa-
tion on numerous nodes. Therefore, the
probability that the adversarial collusion

could take over enough of the network to
make an impact on a user is very small.

• Faithless Farmer - The threat of a data
host taking data from one data owner
and giving it to other users on the net-
work. This attack is well protected be-
cause even if another user receives a
shard it was not supposed to receive, the
nature of the shard being a fraction of
the data and being encrypted makes it
almost impossible for adversary to recre-
ate the original file.

Another strong feature that is currently im-
plemented on the Storj is the ability to stream
both audio and video files from the Storj net-
work. A user, as opposed to keeping these
files stored on his own device, could keep it
in the Storj network and listen/watch the file
on media players like Mplayer or VLC.

3.4.2 Weaknesses

Storj is very new in development, with the
group’s white paper posted on December
2016 and remains unpublished. Because of
this, there is still a lot of room for growth for
the system and many features missing from
the current implementation. In trying out
Storj for ourselves, we encountered the fol-
lowing in which we thought to be weaknesses
of the system:

• Public Sharing - Although the system
prevents unauthorized access reliably,
the feature to allow other trusted par-
ties have access to a user’s bucket and/or
files is currently unstable. There are use
cases where as a data owner, granting
push or pull access to other data owners
would be useful.

• Command-line only - There are no sta-
ble client tools out right now for Storj to
interface with the network in a more user
friendly way as opposed to command line
inputs. Details such as inputing a bucket
id and inputing a file id should be ab-
stracted away from the user.



5

• Overwriting Files - Currently a data
owner cannot edit a file on the Storj net-
work. To update a file, one must down-
load the file, make said changes, delete
the file on the network, and then push
the new file. At the very least, the op-
tion to replace the existing file would be
useful.

• Compromised Data Owner Attack -
There is no defense in place if an adver-
sary gained access to both a user’s node
id and private key. This in of itself is a
hard attack to protect against in a dis-
tributed system, and a worthwhile trade
off for all the other attacks that Storj
defends against.

Upon experiencing these weaknesses, our
group thought what could we build on top of
Storj to provide an easier to use distributed
file storage experience. We felt we could most
improve the second and third weaknesses in
building a client side file sync.

4 Storj Sync

Drawing inspiration from Dropbox sync,
which constantly keeps a user’s files on Drop-
box in sync with ones that the user is editing
locally, our group wanted to extend our final
project research in building a similar tool on
top of Storj. Storj Sync aims to allow users
to easily sync their files to Storj network and
keep up to date after edits. It also aims to
allow users to revert to previous versions of a
file if they feel the current version is corrupted
for any reason or because of user error.

The code is available publicly at https://
github.com/rtran9/6.857-storj-sync.

4.1 How To Use

Storj Sync could be installed using npm after
cloning the repository. The instructions are
as follows:

$ git clone <repo>

$ npm install -g

$ storjsync register

This triggers a prompt for the user to
create an account with Storj, asking for an
email and password. Upon completion, the
user would need to confirm this with an
email.

$ storjsync login

The user logs into the storjsync system.
This creates a key pair. The private key is
kept locally, and the public key is sent to
Storj.

The user is now ready to sync folders.

$ storjsync init-sync

<file-directory>

This command configures the folder to be
synced to Storj and initiates the first upload
of all the files contents. The user will be
asked for a passphrase for a keyring if this is
the first time the user is uploading a file.

The user may manually sync the folder
with the following command:

$ storjsync sync <file-directory>

This syncs any local changes to what is being
stored in the Storj network.

The user can also create snapshots.

$ storjsync snapshot

<file-directory>

This creates a backup of the entire directory,



6

which may be downloaded at any time in the
future.

Users can list the snapshots that are
available for the synced folder using:

$ storjsync list-snapshots

<file-directory>

This returns a list of timestamps of when
the snapshots were created.

The user can download the snapshot to
recover a previous version of the file with:

$ storjsync download-snapshot

<file-directory> <timestamp>

<output-path>

4.2 How It Works

4.2.1 The Initial Sync

Upon logging in, storjsync will keep the pri-
vate key and keyrings in a folder in the home
directory:

~./.storjsync

Any time the user syncs a new folder, they
will be using that private key.

On the initial sync, a directory is created
within the specified directory to be synced at

~/synced-folder/.storjsync

This is where storjsync keeps information
specific to the folder to track changes. This
directory is more or less hidden. Nothing in
these files will be uploaded to Storj.

Next, the first sync creates a table at

~/synced-folder/.storjsync/main.table

Then storjsync will begin to recursively up-
load all the files in the directory. Files are
tracked by their filepath. The table keeps
track of where the files have been uploaded
to in Storj and metadata about the file. Most
importantly, it keeps a last modified field on
the file.

4.2.2 Syncing Changes

When syncing, storjsync explores the entire
local directory. For each file, it looks at the
last modified timestamp and compares it to
the table. If they are different, then storjsync
will delete the current version of the file in
Storj then upload the new version. The table
will be updated to include the new modified
timestamp.

If there are any new files compared to what
is in the table, it will upload them to Storj.

There is also the case where files are deleted
in the local directory, in which case there are
files in the table that were not found when ex-
ploring the directory. In this case, storjsync
will delete these files in the Storj network.

4.2.3 Snapshots

Snapshots are created by re-uploading the di-
rectory into a new location in Storj. We man-
age these by keeping a folder of snapshots in

~/synced-folder/.storjsync/snapshots

Similar to how a table keeps track of files for
syncing, snapshots are also tracked by a ta-
ble. A separate table is created, named by
a timestamp, into the snapshots directory.
Storjsync can show the user which snapshots
are available by looking in the snapshots di-
rectory. The snapshot table contains all the
information necessary for the user to be able
to download the snapshotted folder.

4.3 Results

We built on top of the open-sourced Storj li-
brary and CLI (command-line interface). We
expanded the Storj CLI to include the func-
tions we wanted in the storjsync CLI. The



7

current status of the project doesn’t include
any processes that automatically sync. Per-
forming an operation like syncing every hour
was very specific to the operation system so
we refrained from doing so.

Also, to use Storj itself right now isn’t free.
If a user registers for an account, they will
receive 25 Gb of free space. Though, a user
could accommodate this by Storj farmer.

Additionally, a user cannot download their
files from Storj on another device unless there
exists a copy of their private key and keyring
on that device. If the Storj team develops a
more efficient way for users to retrieve their
files on any of their devices, storjsync could
be able to help Storj become more like Drop-
box and Google Drive, where users can com-
fortably store their files on Storj and down-
load or stream their files on any of their de-
vices.

5 Future Work

As previously mentioned in section 3.4 during
the discussion on Storj weaknesses, Storj as a
system has a lot of room to grow both within
the system and with user applications built
on top of Storj. The following are other pos-
sible areas of future research to help improve
the Storj system.

5.1 Secret Sharing

Currently, to regenerate the encrypted file on
download, Storj requires the retrieval of all
n shards to create the file. Granted, it only
needs to find one copy of each shard, but one
could imagine a secret sharing algorithm that
sends n shards and only requires copies of k
shards where k < n to recreate the encrypted
file. The Storj team mentions implementing
this feature at some point in the future us-
ing Erasure Coding. Shamir’s secret sharing
would also be able to work in this system and
it would be interesting to investigate which
of the three (Shamir, Erasure, or none) pro-
duces the most reliable results.

5.2 Reputation System

As previously mentioned, Storj implements a
contract system in their upload API calls to
match renters (data owners) to farmers (data
hosts). As part of this contract system, it
would be useful to know which members of
their network were not reputable (corrupting
own data, avoiding payment, etc.) so that it
could assign contracts accordingly. A reliable
distributed reputation system is still an ac-
tive area of research and Storj would greatly
benefit from an effectively reliable one. [1]

6 Conclusion

In trying to produce a censorship-resistant
file storage system, our group directed to-
wards building on top of a decentralized peer-
to-peer file system. Storj was able to provide
very reliable and reasonable data availability
and integrity guarantees, while also providing
a secure enough uploading and downloading
protocol to make the system very censorship-
resistant. The early life of the project allows
great room for growth, which led our group
to building a client file syncing tool.

References

[1] S. Wilkinson, T. Boshevski, J. Brand-
off, J. Prestwich, G. Hall, P. Gerbes, P.
Hutchins, C. Pollard : Storj. Second edition.
https://storj.io/storj.pdf.

[2] Google Terms and Services.
https://www.google.com/policies/terms/.

[3] J. Benet: IPFS - Content Addressed, Ver-
sioned, P2P File System. Third Edition.
https://github.com/ipfs/papers/blob/master/ipfs-
cap2pfs/ipfs-p2p-file-system.pdf.

[4] J. E. Berkes: Decentralized Peer-
to-Peer Network Architecture:
Gnutella and Freenet. 9 April 2003.
http://www.berkes.ca/archive/berkes gnutella freenet.pdf.


