Hash functions

Hash fn: \(H: \mathbb{Z}_2^* \rightarrow \mathbb{Z}_2^k \)
- Compressing
- Efficiently computable
- Want some security property; depends on application

1) One-wayness
 - A probabilistic polynomial-time adversary
 - Given \(y = H(x) \) for random \(x \), infeasible to find \(x' \) s.t. \(H(x') = y \).

2) Preimage resistance
 - "Given any \(y \in \mathbb{Z}_2^k \), infeasible to find \(x' \) s.t. \(H(x') = y \)."
 - Wait! Does this make sense? What if I give you \(H(0) \)?
 - In fact, adversary \(A \) could have a hardwired output \(+H(0) \):
 - Then clearly not true that \(\forall y \in \mathbb{Z}_2^k \), \(\Pr[A(y) \in H^{-1}(y)] = \) small.
 - So, often we talk about hash fn families \(H = \{ h_s \}_{s \in \mathbb{Z}_2^k} \).
 - "Seed" is picked randomly
 - Then we have: \(\forall y \in \mathbb{Z}_2^k \), \(\Pr[A(s,y) \in h_s^{-1}(y)] = \) negligible.
 - (i.e., probability is over random choice of fn from family)

3) Second preimage resistance
 - "Given any \(x \), infeasible to find \(x' \neq x \) s.t. \(H(x') = H(x) \)," more precisely: \(\forall A, \forall x \in \mathbb{Z}_2^k \), \(\Pr[H_s(A(s,x)) = h_s(x)] = \) negligible.

4) Collision resistance
 - "Infeasible to find any \((x, x') \) s.t. \(H(x) = H(x') \) and \(x \neq x' \)."

5) Random oracle

Birthday paradox: how hard is it to find collisions?
- \(\Pr[\text{two students have same birthday}] = \frac{1}{365} \) (1/2 or not?)

Floyd's cycle-finding algorithm: a better strategy than random guessing for collision finding.

Hash fn standards:
- MDS [Rivest, 1991]
 - Used in an attack in 2012! "Flame 1.05"
 - Google used SHA-1 in 2012!
 - Google "Flame 1.05"

Collisions found in 1996, 2004 so not recommended.

Floyd's cycle-finding algorithm: a better strategy than random guessing for collision finding.

Floyd's cycle-finding algorithm: a better strategy than random guessing for collision finding.

But still fine for some purposes (e.g., HMAC).

- SHA-1 [NSA, 1995]
 - Phasing out. All major browsers to stop accepting SHA-1 SSL certs by this year.
 - \(2^{69} \)-time algo to find collisions as of 2005.

- SHA-2 [NSA, 2001]
 - Closely related to SHA-1. Widely used.
 - SHA-3 (Keccak) [5-year NIST contest, 2012]