
Massachusetts Institute of Technology Handout 4
6.857: Network and Computer Security March 7, 2016
Professors Ronald L. Rivest and Yael Tauman Kalai Due: March 21, 2016

Problem Set 3

This problem set is due on Monday, March 21, 2016 at 11:59 PM. Please note our late submission penalty
policy in the course information handout. Please submit your problem set, in PDF format, on Gradescope.
Each problem should be in a separate PDF. Have one and only one group member submit the finished
problem writeups. Please title each PDF with the Kerberos of your group members as well as the problem
set number and problem number (i.e. kerberos1 kerberos2 kerberos3 pset3 problem1.pdf).

You are to work on this problem set with groups of your choosing of size three or four. If you need help
finding a group, try posting on Piazza or email 6.857-tas@mit.edu. You don’t have to tell us your group
members, just make sure you indicate them on Gradescope. Be sure that all group members can explain the
solutions. See Handout 1 (Course Information) for our policy on collaboration.

Homework must be submitted electronically! Each problem answer must be provided as a separate pdf.
Mark the top of each page with your group member names, the course number (6.857), the problem set
number and question, and the date. We have provided templates for LATEX and Microsoft Word on the
course website (see the Resources page).

Grading: All problems are worth 10 points.
With the authors’ permission, we may distribute our favorite solution to each problem as the “official”

solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in your profile on your
homework submission.

Our department is collecting statistics on how much time students are spending on psets, etc. For each
problem, please give your estimate of the number of person-hours your team spent on that problem.

Problem 3-1. Security of “two-pass CBC”

In class we saw a definition of security for an encryption mode of operation. In particular, we would like a
block cipher mode that provides indistinguishability under a chosen ciphertext attack (IND-CCA, defined
in lecture 9 as a game with an adversary).

Consider the following two-pass CBC mode:

Given a key k and a message M1,M2, . . . ,Mn (assume for convenience that the message is a multiple of the
block size so that we don’t have to worry about padding or ciphertext stealing), encryption works as follows:

Initialization
A0 = randomly chosen block
Ai = Mi for i = 1, 2, . . . , n

Pass 1
B0 = Ek(A0)
Bi = Ek(Ai ⊕Bi−1) for i = 1, 2, . . . , n

Pass 2
C0 = Ek(B0 ⊕Bn)
Ci = Ek(Bi ⊕ Ci−1) for i = 1, 2, . . . , n

The output of the two-pass CBC mode encryption is C0, C1, . . . , Cn.

(a) Explain how to decrypt C0, C1, . . . , Cn.

6.857 : Handout 4: Problem Set 3 2

(b) Does this encryption mode meet the security definition mentioned above (IND-CCA)? Explain why
or why not.

Next, consider an alternative two-pass CBC mode in which we reverse the intermediate blocks before running
the second pass. Concretely, the initialization and first pass are the same as defined above. The second pass
is changed to the following:

Pass 2
C0 = Ek(B0 ⊕Bn)
Ci = Ek(Bn+1−i ⊕ Ci−1) for i = 1, 2, . . . , n

Again the outputs of this modified two-pass CBC mode encryption is C0, C1, . . . , Cn.

(c) Explain how to decrypt C0, C1, . . . , Cn for this modified two-pass CBC mode.

(d) Does this encryption mode meet the security definition mentioned above (IND-CCA)? Explain why
or why not. (Hint: consider what happens when you modify one ciphertext block during decryption.)

Problem 3-2. The Legend of SATelda

Ben Bitdiddle is designing a new game, which he calls the ”The Legend of SATelda”.

Ben has become enthusiastic about SAT-solver (https://en.wikipedia.org/wiki/Boolean_satisfiability_
problem) which have become amazingly efficient in recent years, able to solve SAT instances with large num-
bers of variables and clauses.

In Ben’s new (single-player) game, there is a large secret K that the player is trying to find. Here K is a
randomly chosen 256-bit secret key for that game. (Each game session has a fresh key.) When the player
determines K, he can decrypt the Golden Orb and become Master of the Universe.

Every time the player defeats a demon in combat, he receives a random 3-variable clause consistent with the
secret key K. More precisely: let the bits of K be denoted

K = k1, k2, ..., k256

so each ki is a bit.

A clause is a disjunction of three literals, where each literal is either a variable or its negation. The variables
are the bits ki.

For example, suppose the secret is
K = 0110100010....

Then when a player defeats a demon he may receive the clause {1,−3,−4} (meaning (k1 or (not k3) or (not
k4))) which is true for the given K, since k4 is false. Another consistent clause is {2, 5,−7}, which has two
true literals.

A clause is generated randomly for K by picking three distinct positions out of {1, 2, ..., 256}, then choosing
signs for those literals randomly (except for the one signage that isn’t true for K), so each of the 7 valid
signages for that clause is equally likely.

When the player collects enough clauses, he can apply his favorite SAT solver to solve for K. (He might need
hundreds of clauses, but that’s OK; the game is long...) Ben can “try to solve the Golden Orb” whenever
he likes with a trial key K; there is no penalty for doing so. He can try as many times as he likes until he
solves it.

(a) How is Ben’s game like “secret sharing”? How is not like “secret sharing”?

6.857 : Handout 4: Problem Set 3 3

(b) Suggest why the NP-completeness of 3-SAT is perhaps not a problem here. Or is it?

(c) MiniSAT (https://www.msoos.org/2013/09/minisat-in-your-browser/) is a SAT solver which,
given a list of short clauses, can generate a valid SAT expression that satisfies all the clauses, if one
exists.

How many demons might a player have to defeat before he can win the game? Specifically, suppose
that the player wins if he determines K = 111..111. Run three trials of generating random 3-literal
clauses, and determine how many are needed for the MiniSAT to give the correct value for K, i.e. the
MiniSAT should output 0 conflict literals, and “SATISFIABLE v 1 2 3 256 0”.

Submit any code used to determine this in your pdf write-up, and give the number of demons the
player had to have defeated in each of the three trials.

It may be useful to use binary search to determine how many of the clauses are needed. Assume that
the min number of clauses you need is at least 86 (i.e., 256/3), and the max number of clauses you
would need is 20000, to facilitate the binary search. Note that if x clauses was enough to win the
game ever, you can put that as one of your trials. You may also round the number of clauses you
need to the nearest 10. Don’t feel restricted to using the browser MiniSAT function. You may also
use a alternative versions online, e.g. a python SAT solver (https://github.com/netom/satispy).

Problem 3-3. Speck or Random? Distinguishing Reduced Round Speck

A common way to encrypt messages of variable length is to use a stream cipher. These stream ciphers are
commonly built upon trusted block ciphers. One such block cipher is the Speck block cipher (https://en.
wikipedia.org/wiki/Speck_(cipher)). It is remarkably simple, consisting of only 64-bit xor, addition, and
cyclic shifts, giving it great performance on software platforms. Much cryptanalysis has gone into the Speck
128/128 cipher (which has 128-bit key and 128-bit block). No one has had any (public) success in recovering
a secret key when more than 17 out of 32 rounds are run (https://eprint.iacr.org/2014/320.pdf). Let’s
see how we can do!

Instead of conducting key-recovery attacks, we will be looking at distinguishing Speck output from random.

One method for distinguishing a cipher is to use the Chi-Squared test
https://en.wikipedia.org/wiki/Pearson’s_chi-squared_test#Discrete_uniform_distribution . The
Chi-Squared test helps determine how similar two distributions are. The Chi-Squared statistic is defined as

χ2 =

N−1∑
i=0

(Ei −Oi)
2

Ei

Where N is the number of possible events of a random variable, Ei is the expected value of event i, and Oi

is the observed value of event i.

We will generate B blocks of Speck output by setting a random key and incrementing the input plaintext
nonce for each block (CTR mode). We can leverage this Chi-Squared distribution by considering the random
variable Ri = the number of times a specific byte in the 128-bit output has value i throughout all of the B
total output blocks. Now we can use the Chi-Squared distribution between Ri and uniformly random bytes.
In this case, N = 256, and Ei = B/16. We then compute Oi by storing counts of each value of our byte of
interest in the Speck output. Finally, we compute χ2 and decide the output is not random if χ2 deviates by
more than three standard deviations from the mean.

In our case, the Chi-Squared statistic has expected value and standard deviation

E(χ2) = N − 1

σ(χ2) =
√

2(N − 1)

Use the Chi-Squared test to distinguish r-round Speck 128/128 for as high of an r as you can.
You may generate as many ciphertext blocks as you wish (arbitrarily high B). Please submit
your code, an explanation of your distinguishing techniques, and your results to Gradescope.

6.857 : Handout 4: Problem Set 3 4

We have provided a python Speck implementation in the file speck.py, a test file challenge.py. And you’ll im-
plement distinguish.py. (Feel free to use implementations in another language if you wish, for more efficiency.
But it is not required that you do so.)

