Admin:

Today:

(Finish elliptic curves - Yael)

Pedersen commitments

PK encryption

EL Gamal PK enc.

Semantic security

DDH (Decision Diffie-Hellman)

IND-CCA2

Cramer-Shoup

if time

Readings:

Paar: Chapters 6, 7, 8

Katz: Chapters 10, 11
Group theory facts: (review)

Let G be a cyclic group with generator g.
Let $m = |G|$ (order of G)

Then:

1. $G = \{g^0, g^1, \ldots, g^{m-1}\}$

2. To pick a random element of G:
 Let $x \in \mathbb{Z}_m = \{0, 1, \ldots, m-1\}$
 return $y = g^x$

3. If $y \in G$ & $z \in G$, then yz uniformly random in G.

4. Suppose $d \mid m$
 Then set of d^{th} powers
 $\{g^0, g^d, g^{2d}, \ldots, g^{m-d}\}$
 is a subgroup of order m/d

Ex: quadratic residues in \mathbb{Z}_p^* has order $\frac{p-1}{2}$.
Subgroup is cyclic with generator g^d.

Pedersen Commitment Scheme

Recall: \(\text{Commit}(x) \rightarrow \text{"commitment to } x\)"

\(\text{Reveal}(c) \rightarrow \text{"opens commitment, reveals } x\)"

Properties:

- **Hiding:** Commitment reveals nothing about \(x \)
- **Binding:** Can only open in one way (can't change \(x \))
- **Nonmalleability:** Can't produce commitment to \(e.g., x+1 \) from commitment to \(x \).

Setup:

\[p, q \text{ large primes s.t. } q \mid p-1 \text{ (e.g., } p \text{ 'safe prime')} \]

\(g \) generator of order-\(q \) subgroup of \(\mathbb{Z}_p^* \)

\(e.g., \text{if } p \text{ safe then } \langle g \rangle = \mathbb{Z}_p^* \)

\(h = g^a \) a secret \(h \) generates \(\langle g \rangle \) as well

\(a \neq 0 \mod q \)

\(x \in \mathbb{Z}_q \) (i.e., \(0 \leq x < q \))

Sender chooses random \(r \in \mathbb{Z}_q \)

\(\text{Commit}(x) = c = g^x h^r \mod p \)

Reveal:

Sender reveals \(x \) and \(r \)

Receiver verifies that \(c = g^x h^r \mod p \)
Pedersen commitment (cont.)

Hiding: Given \(c = g^x h^r \)

Can in principle be opened to any \(x' \in \mathbb{Z}_q \) for some \(r' \)

\[
\begin{align*}
 g^x h^r &= g^{x'} h^{r'} \\
 g^x g^{ar} &= g^{x'} g^{ar'} \\
 g^{x+ar} &= g^{x'+ar'} \\
 x + ar &= x' + ar' & (\text{mod } q) \\
 r' &= (x - x')/a + r \\
 &\text{if } q \text{ is prime so } a^{-1} \text{ exists and } r' \neq r \text{ since } x \neq x'
\end{align*}
\]

Binding: If sender can reveal two ways

\[
\begin{align*}
 c = g^x h^r &= g^{x'} h^{r'} & (\text{mod } p) \\
 x + ar &= x' + ar' & (\text{mod } q) \\
 a = (x - x')/(r - r) \\
 &\text{if } r \neq r' \text{ and } q \text{ is prime} \\
 &= \text{discrete log of } h, \text{ base } g, \text{ mod } p
\end{align*}
\]

Non-malleable: No.

If \(c = \text{Commit}(x) = g^x h^r \)

then \(c' = \text{Commit}(x) = g^x (g^x h^r) = g^{x+x'} h^{r} \)

(Some applications don't need non-malleability)
Public-key encryption:

Let λ = "security parameter" (i.e. "key size")

Then $1^\lambda = 11 \ldots 1$ λ 1's in a row. Length = λ

Need three algorithms:

1. **Keygen (1^λ) \rightarrow (PK, SK)**

2. **E (PK, m) \rightarrow c**

 Encryption takes $m \in$ message space M

 to $c \in$ ciphertext space C

 (with given public key PK)

 Encryption may be randomized.

3. **D (SK, c) \rightarrow m**

 Decryption is deterministic

 s.t. (Correctness condition)

 $(\forall (PK, SK)) (\forall m) D (SK, E (PK, m)) = m$
El-Gamal PK encryption (Taher El Gamal, 1984)

Let $G = \langle g \rangle$ be a cyclic group with generator g.
(Keygen may output description of g & G, given λ.)

Keygen:
Pick x at random from $[0...|G| - 1]$

Let $SK = x$.
Let $PK = g^x$
Output (PK, SK) (a description of G, if needed)

Encryption: (of message m)
Pick k at random from $[0...|G| - 1]$
Assume message m represented as element of G
Let $y = g^x$ be PK of recipient
Output $c = (g^k, m \cdot y^k)$ as ciphertext

Decryption:
Let $c = (a, b)$ be received ciphertext
Let $m = b / a^x$. Output m.
[Correctness follows since $a^x = g^{kx} = g^{xk} = y^k$.]
How to define security for PK encryption?

We'll see two definitions:

1. "semantic security" (Goldwasser & Micali)

2. "adaptive chosen ciphertext attack" (ACCA) secure
 (as to IND-CCA we saw for symmetric encryption)

"Game" definition of semantic security:

Phase I ("Find"):
- Examiner generates (PK, SK) using Keygen(1^λ)
- Examiner sends PK to Adversary
- Adversary computes for polynomial (in λ) time, then
 outputs two messages m_0, m, of same length,
 and "state information" s. [m_0 ≠ m, required]

Phase II ("Guess"):
- Examiner picks b^R ← {0, 1}, computes c^R = E(PK, m_b)
- Examiner sends c, s to Adversary
- Adversary computes for polynomial (in λ) time,
 then outputs b̂ (his "guess" for b).

Adversary "wins" game if b̂ ≠ b.
Def: A PK encryption scheme is **semantically secure** if $\text{Prob}[\text{Adv wins}] \leq \frac{1}{3} + \text{negligible}$.

Fact: In order for a PK encryption scheme to be semantically secure, it must necessarily be **randomized**. *(Randomized encryption is necessary but not sufficient for semantic security.)*

Is El Gamal PK encryption semantically secure?

More precisely: it can’t be stateless & deterministic. It may be randomized, or stateful, or both.