Today: Group theory review

Diffie Hellman Key Exchange

Five crypto groups: \(\mathbb{Z}_p, \mathbb{Q}_p, \mathbb{Z}_n, \mathbb{Q}_n \),

Elliptic curves

Reading: Katz-Lindell 7.8

Def: A (finite) abelian group \((G, \cdot)\) satisfies the following:

- Identity: \(1 \in G \) s.t. \(\forall a \in G \) \(a \cdot 1 = 1 \cdot a = a \)
- Inverse: \(\forall a \in G \) \(\exists b \in G \) s.t. \(a \cdot b = 1 \) \((b = a^{-1})\)
- Associativity: \(\forall a, b, c \in G \) \(a \cdot (b \cdot c) = (a \cdot b) \cdot c \)
- Commutativity: \(\forall a, b \in G \) \(a \cdot b = b \cdot a \)

Recall:

Def: Order \((a) \) = least \(u > 0 \) s.t. \(a^u = 1 \) (in G)

Lagrange's Thm: In a finite group \(G \) of size \(t \)

\[\forall a \in G \quad \text{order}(a) | t \]

Corollary: In a finite group \(G \) of size \(t \)

\[\forall a \in G \quad a^t = 1 \]
Example \(\forall a \in \mathbb{Z}_p \quad a^{p-1} \equiv 1 \mod p \) (Fermat's Thm)

\(\forall a \in \mathbb{Z}_n \quad a^{\phi(n)} \equiv 1 \mod n \) (Euler's Thm)

(since \(|\mathbb{Z}_p^*| = p-1 \) & \(|\mathbb{Z}_n^*| = \phi(n) \))

Recall:
- Def: \(\langle a \rangle = \{ a^i : i \geq 0 \} \) = subgroup generated by \(a \)

Def: If \(\langle a \rangle = G \) then \(a \) is a generator of \(G \), and \(G \) is cyclic.

Claim: \(|\langle a \rangle| = \text{order}(a) \).

Exercise: In a finite abelian group \(G \) of prime order \(\forall a \in G \) if \(a \neq 1 \) then \(G \) is a generator of \(G \).

Thm: \(\mathbb{Z}_n^* \) is cyclic iff \(n \) is \(2, 4, 2^m \) or \(2p^m \).
Fact: If G is a cyclic group of order t, and g is a generator, then the relation \(x \mapsto g^x \) is 1-to-1 between $\{0, 1, \ldots, t-1\}$ and G.

\[x \mapsto g^x \quad \text{exponentiation} \]

\[g^x \mapsto x \quad \text{discrete logarithm (DL)} \]

- Computing discrete logarithms (the DL problem) is assumed to be hard for "well-chosen" groups. Eg. for \mathbb{Z}_p^*, where p is a large random prime, or large random safe prime.

 Not in all groups! (\mathbb{Z}_p^*)

 - Fastest alg: takes time $> 2^{\log p / 3}$ sub-exp alg

- Common public-key setup:

 Public system parameters:

 \[P = \text{large prime} \quad \text{(eg. 1024 bits)} \]

 \[g = \text{generator of } \mathbb{Z}_p^* \]

 User: \[sk = x \text{ random in } \{0, 1, \ldots, P-2\} \]

 \[pk = y = g^x \mod P \]
Secrecy of x follows from the DL assumption that asserts that it is hard to find discrete logarithms

\[
\text{(Appears to be roughly as hard as factoring)}
\]

\[
\text{(an integer of the same size as } p
\]

\[
\text{for both, best known alg } \approx \mathcal{O}(k^{1/3}) \text{ time)
\]

\[\text{Not a thm!}\]

- We often need to be able to represent msgs as group elements:

If M is a msg space and G is a group, we need an injective (1-to-1) map $f: M \rightarrow G$

such that $f(m)$ can "represent" msg m.

Eg., if $p > 2^k$ then we can identify k-bit msgs with the integers $1, 2, \ldots, 2^k \mod p$

(in \mathbb{Z}_p^*)

- In some groups this can be tricky.
Diffie-Hellman Key Exchange

Q: How to establish shared secret in presence of eavesdropper? (Eve is passive - only listens)

(Precurser to true public key cryptography).

- Let G be a cyclic group w. generator g
- G & g fixed and public.

\[A \quad B \]

- Alice chooses a random secret x from 50,1,7,161-13
- Alice computes g^x
- Bob similarly chooses secret y from 50,1,7,161-13
- Bob computes g^y

\[g^x \quad g^y \]

Alice computes $K = (g^y)^x$

Bob computes $K = (g^x)^y$

\[K = g^{xy} \]

- If DL hard, Eve can't compute x or y.
 That doesn't mean she can't compute K!
Computational Diffie-Hellman Assumption (CDH):

Given \(g^x, g^y \) it is hard to compute \(g^{xy} \) (i.e. negligible chance to succeed).

CDH \(\Rightarrow \) Eve doesn’t learn \(K \) except w. negligible probability.

Q: Can Alice & Bob use \(K \) as a shared secret key to encrypt and/or MAC later traffic?

Eve may learn a lot of information about \(K \) (such as 200 msb’s?).

Decisional Diffie-Hellman Assumption (DDH):

Given \(g^x, g^y \) it is hard to distinguish between \(g^{xy} \) & \(g^u \) where \(u \) is random in \(\{0,1,\ldots,10^{l-1}\} \)

w.p. > \(\frac{1}{2} + \text{negl} \).

Thm: DDH \(\Rightarrow \) DH key exchange is secure.

(Eve cannot distinguish between \(K \) and a fresh random key.)
Pf: Follows immediately from the assumption!

Assuming DDH, we can use k to encrypt and/or
MAC later.

- Don't use same k for both!

 A MAC can leak enough information to break
 the enc but not enough to allow forgery,
 and vice versa.

- Use k to derive 2 fresh keys: one for MAC
 & one for enc (using PRG).

Next week: commitment scheme & public key
encryption scheme under DL (DDH/CDH).
5 Common Groups:

1. \(\mathbb{Z}_p^* = \{0, 1, \ldots, p-2\} \) \(p \) prime

 \(\mathbb{Z}_p^* \) is always cyclic

 Often, we use \(p=2q+1 \) (\(q \) is prime) \(\Rightarrow \) \(p \) safe prime

 • Half of \(\mathbb{Z}_p^* \) are generators, the others are squares (\(\mathbb{Q}_p \)). \(\Rightarrow \) Easy to test!

 • \(\mathbb{Z}_p^* \) has a large subgroup of prime order
 (i.e. order \(q \)) \(\Rightarrow \) very useful (we will see next week)

2. \(\mathbb{Q}_p = \text{Quadratic residues (squares)} \mod \text{prime } p \)

 \(= \{\alpha^2 : \alpha \in \mathbb{Z}_p^*\} \subseteq \mathbb{Z}_p^* \)

 \(|\mathbb{Q}_p| = \frac{1}{2} |\mathbb{Z}_p^*| = \frac{p-1}{2} \) ("half of \(\mathbb{Z}_p^* \) are squares")

 \(\mathbb{Q}_p \) is cyclic: If \(\langle g \rangle = \mathbb{Z}_p^* \) then \(\langle g^2 \rangle = \mathbb{Q}_p \)

 If \(p=2q+1 \) (\(p \) is safe prime) then

 \(|\mathbb{Q}_p| = q \) \(\Rightarrow \) prime order subgroup.

 \(\Rightarrow \) Any element (other than 1) generates \(\mathbb{Q}_p \).

L.11.8
\[\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_{p-1} : \gcd(a, n) = 1 \} \quad \text{(RSA)} \]

Def: \(\psi(n) = |\mathbb{Z}_n^*| \)

If \(n = pq \), where \(p, q \) distinct odd primes then \(\mathbb{Z}_n^* \) is not cyclic.

\[\mathbb{Z}_n^* \cong \mathbb{Z}_{p-1}^* \times \mathbb{Z}_{q-1}^* \]

the order of each element \(a \in \mathbb{Z}_n^* \) is \(\text{lcm}(p-1, q-1) < \frac{p-1}{2} \times \frac{q-1}{2} \)

\(Q_n = \{ a^2 : a \in \mathbb{Z}_n^* \} = \text{"squares mod } n\text{"} = \text{"quadratic residues mod } n\text{"} \)

If \(n = pq \) where \(p = 2r+1 \) safe prime \((r \text{ prime})\)
\(q = 2s+1 \) safe prime \((s \text{ prime})\)

then \(|Q_n| = r \cdot s \) & \(Q_n \) is cyclic.
Elliptic Curves

Recall: In \(\mathbb{Z}_p^* \) we have sub-exp alg for finding DL.

We would like a group \(G \) for which solving DLP takes time \(\exp(\log |G|) \) (exp. time).

Elliptic Curves!
- Very different from \(\mathbb{Z}_p^* \), \(\mathbb{Z}_n^* \), \(\mathbb{Q}_p \), \(\mathbb{Q}_m \)

- Appear in many diverse areas of mathematics:
 number theory, complex analysis, crypto, mathematical physics

[Koblitz, Miller 85]
Used in

\[\text{Def: An elliptic curve is a curve given by an equation of the form} \]
\[y^2 = x^3 + Ax + B \]

s.t. the discriminant
\[\Delta = 4A^3 + 27B^2 \text{ is non-zero} \]

= the polynomial \(x^3 + Ax + B \) has distinct roots
For reasons to be explained later we also toss in an extra point ∞.

$$E = \{ (x, y) : y^2 = x^3 + Ax + B \} \cup \{ \infty \}.$$

The coordinates can be in any field: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \text{GF}[p]$ used in crypto!

$$E(q) = \{ (x, y) \in \text{GF}[q]^2 : y^2 = x^3 + Ax + B \pmod{q} \} \cup \{ \infty \}$$

$A, B \in \text{GF}[q]$.

Claim: $E(q)$ is a finite group.

How is the operation defined? (coming up...)

- Best known alg that solves DLP takes time $\sim \sqrt{q}$ (exponential).

- Clearly $|E(q)| < 2q + 1$

Thm [Hasse, 1922] $|E(q)| = q + 1 + t$

$$- 2\sqrt{q} \leq t \leq 2\sqrt{q}$$
Note: We would expect $|E(q)| \approx q + 1$

if $x^3 + Ax + B$ acted "randomly":

$\sim \frac{1}{2}$ the values are squares, each of which
has two square roots.

Fact: $|E(q)|$ can be computed "efficiently" (time $< (\log q)^6$)

This is important since for crypto we want $E(q)$ to
contain a subgroup of large prime order.

Group operation: Geometrically

\[
\begin{align*}
\text{identity} &= \infty \\
\forall Q \in E(q) &\quad Q + \infty = Q \\
Q + (-Q) &= \infty
\end{align*}
\]

Addition of 2 points P, Q is performed by

drawing the line connecting P, Q, finding its 3rd
intersection with $E(g)$, denoted by R, and letting

$$p + q = -r$$

- $p + p = ?$ Draw the tangent line through p, and continue as before. This can be done over any finite field!

Let $P = (x_1, y_1)$, $Q = (x_2, y_2)$, $-R = p + q = (x_3, y_3)$

The line through P, Q can be written as

$$y = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) + y_1 = \lambda x + \nu$$

To find R we need to find the intersection of

$$E(g) : \quad y^2 = x^3 + ax + b$$

$$L : \quad y = \lambda x + \nu$$

$$= x^3 + ax + b - (\lambda x + \nu)^2 =$$

$$= (x - x_1) \cdot (x - x_2) \cdot (x - x_3)$$

$$= x^3 - (x_1 + x_2 + x_3) x^2 + (x_1 x_2 + x_1 x_3 + x_2 x_3) x - x_1 x_2 x_3$$

$$\Rightarrow \quad \lambda^2 = x_1 + x_2 + x_3$$

$$\Rightarrow \quad x_3 = \lambda^2 - x_1 - x_2$$

$$y_3 = \lambda x_3 + \nu$$
Note: If \(x_1 = x_2 \), \(y_1 \neq y_2 \), \(P + Q = \infty \) (vertical line)

If \(P = Q \) & \(y = 0 \), \(P + Q = \infty \) (vertical tangent)

* If \(P = Q \) \& \(y \neq 0 \), \(\lambda = \frac{-3x_1^2 + A}{2y_1} \) (tangent)

\[
\begin{align*}
x_3 &= \lambda^2 - 2x_1 \\
y_3 &= \lambda(x_3 - x_1) + y_1
\end{align*}
\]

Thm:

identity → 1. \(P + \infty = \infty + P = P \) \(\forall P \in E(q) \)

inverse → 2. \(P + (-P) = \infty \) \(\forall P \in E(q) \)

associativity → 3. \(P + (Q + R) = (P + Q) + R \) \(\forall P, Q, R \in E(q) \)

commutativity → 4. \(P + Q = Q + P \) \(\forall P, Q \in E(q) \)

\[\Rightarrow (E, +) \text{ is a finite commutative group.}\]

DLP seems to be very hard (requiring \(\sim |E|^{1/2} \) steps) for "well-chosen" \(E(q) \) (see NIST standard curves)

* Some elliptic curves admit "bilinear maps" enabling wonderful crypto (stay tuned!)