Admin:

Pset #1 due Mon 2/27
Pset #2 due Mon 2/27 (new group)
Projects!

Today:

Cryptographic Hash Functions II ("Merkle Day")

- Merkle Trees
- Puzzles
- PK crypto based on puzzles ("Merkle puzzles")
- Constructions:
 - Merkle-Damgard
 - Keccak (SHA-3)

Readings:

Katz & Lindell: Chapter 5
Paar & Pelzl: Chapter 11
Ferguson: Chapter 5
To authenticate a collection of n objects:

Build a tree with n leaves x_1, x_2, \ldots, x_n.

Compute authenticator for node as fn of values at children... This is a "Merkle tree":

![Merkle tree diagram]

$$
\text{value at } x = h(\text{value at } y \parallel \text{value at } z)
$$

Root is authenticator for all n values x_1, x_2, \ldots, x_n.

To authenticate x_i, give sibling of x_i & sibling of all its ancestors up to root.

Apply to: time-stamping data, authenticating whole file system.

Need: CR

Used in Bitcoin...
Puzzles & Brute-Force Search

Want to create a puzzle with a solution known to the creator that requires (on average) a fixed amount of work to solve.

Let \(h: \{0,1\}^* \rightarrow \{0,1\}^d \) be a crypto hash fn (e.g., SHA-256 with \(d = 256 \)).

The "puzzle" will be to invert \(h \), i.e., solve \(h(x) = y \) for \(x \) given \(y \).

To make this a puzzle, we restrict \(x \) to be in a known set \(S \) of possible solutions. E.g., \(S = \{0,1\}^s \) for \(s = 40 \).

To create a puzzle, pick \(x \in S \) at random, compute \(y = h(x) \).

Difficulty of solving \(x \) is \(1/S^{1/2} \) by brute-force search.

If \(S \ll d \) there will be no "false solutions"—no collisions.

Can create multiple (keyed) puzzles \((k,y) \) means solving \(h(k \| x) = y \) for \(x \in S \).

Puzzle spec is \((h,k,s,y) \).

Puzzle creator knows \(k \), solution

Can also have puzzles where creator doesn't know solution with truncated hashes

\(h: \{0,1\}^* \rightarrow \{0,1\}^s \)

Try \(x \) at random until \(h(x) = y \).
Hash cash (Adam Back, 1997)

- Anti-spam measure
- Requires sender to provide "proof of work" ("stemp")
- Email without POW or from sender on white-list is discarded.

- POW:
 - Solve puzzle \(h(k, r) \) ends in 20 zeros
 - where \(k = \) sender\|receiver\|date\|time
 - \(r = \) variable to be solved for
- Include \(r \) in header as POW
- Easy for receiver to verify payment (POW)
- Takes \(x 2^{20} \) trials to solve
- Doesn't work well against botnets 😞
Merkle puzzles

- First "public key" system (really: key agreement)

```
  Alice       Z       Eve          Bob
```

Eve is passive eavesdropper.
How can Alice & Bob agree on a key?

Use puzzles (with restricted domain, so have unique solns)
n = # puzzles of difficulty $2^{s-1} = D$

1. Bob chooses n values $x_1, x_2, ..., x_n$ from $S = \{0, 1\}^s$
 Bob computes $y_i = h(i || x_i)$
 Bob sends $(y_i, E_{x_i}(K_i))$ to Alice for $1 \leq i \leq n$, where $K_i \in_R \{0, 1\}^{256}$

2. Alice picks random i from $[n] = \{1, 2, ..., n\}$
 Alice solves P_i for x_i
 "decrypt" to obtain K_i
 "sends $h(K_i)$ to Bob"

3. Bob & Alice use K_i to communicate secretly from then on.

Time for good guys = $\frac{\Theta(n) + \Theta(D)}{Bob} + \frac{\Theta(D)}{Alice}$

Time for Eve = $\Theta(n \cdot D)$

For $n = D = 10^9$, "almost practical!"
Hash function construction ("Merkle-Damgard" style)

- Choose output size d (e.g., d = 256 bits)
- Choose "chaining variable" size c (e.g., c = 512 bits)

 \[\text{Must have } c \geq d; \text{ better if } c > 2 \cdot d \ldots \]

- Choose "message block size" b (e.g., b = 512 bits)
- Design "compression function" f

 \[f \colon \{0,1\}^c \times \{0,1\}^b \rightarrow \{0,1\}^c \]

 \[\text{f should be OW, CR, PR, NM, TCR, ... } \]

- Merkle-Damgard is essentially a "mode of operation"
 allowing for variable-length inputs:

 * Choose a c-bit initialization vector IV, \(c_0 \)

 \[\text{[Note that } c_0 \text{ is fixed & public]} \]

 * [Padding] Given message, append

 - 10^k bits

 - fixed-length representation of length of input

 so result is a multiple of b bits in length:

 \[M = M_1, M_2 \ldots M_n \ldots (n b\text{-bit blocks}) \]
Then:

$$h(m) = c_n \text{ truncated to } d \text{ bits}$$

Theorem: IF \(f \) is CR, then so is \(h \).

Proof: Given collision for \(h \), can find one for \(f \) by working backwards through chain.

Thm: Similarly for OW.

Common design pattern for \(f \):

$$f(c_{i+1}, M_i) = c_i \oplus E(M_i, c_{i-1})$$

where \(E(K, M) \) is an encryption function (block cipher) with \(b \)-bit key and \(e \)-bit input/output blocks.

(Davies-Meyer construction)
Typical compression function (MD5): (1991)

- Chaining variable & output are 128 bits = 4 x 32
- IV = fixed value
- 64 rounds: each modifies state (in reverse way) based on selected message word
- Message block b = 512 bits considered as 16 32-bit words
- Uses end-around XOR too around entire compression fin (as above)

Xiaoyun Wang discovered how to make collision for MD4, MD5
("Differential Cryptanalysis")

\[g(x, y, z) = \begin{cases}
xy
& \text{if round 1} \\
xy \oplus y
& \text{if round 2} \\
x \oplus y \oplus z
& \text{otherwise}
\end{cases} \]

Not CR! (Xiaoyun Wang 2005)