Admin:

Pset #1 due Mon 3/27
Pset #2 due Mon 3/27.
Rec. in 32-123

Today:

Cryptographic Hash Functions

Definition
Random Oracle Model (ROM)
Properties: OW, CR, TCR, PR, NM
Applications

Readings:

Katz/Lindell (2nd ed) - Chapter 5
Paar/Pelzl - Chapter 11
Ferguson/Schneier/Kohno - Chapter 5
Cryptographic hash functions

Def: A cryptographic hash function maps a domain D (bit strings of arbitrary length) to a range R (bit strings of length d, or bit strings of arbitrary length).

$$h: \Sigma_0^* \rightarrow \Sigma_0^d$$

...all strings of length d

...all strings (of any length > 0)

in an efficient, deterministic, public, "random" manner.

Sometimes called a "message digest function".

No secret key. Anyone can compute h from its published description.

Examples:
- **MD5** $d=128$
- **SHA-256** $d=256$
 (also SHA-512)
- **SHA-3-256** $d=256$
 (Keccak)
- **SHAKE256(512)** $d=512$
 (Keccak)

$d=128,160,224,256,384,512$ common

VIL = Variable input length
FIL = Fixed input length
VOL = Variable output length
FOL = Fixed output length
An ideal hash function: a "Random Oracle" (RO)

- Theoretical model - good intuitive guidance, but not achievable in practice

- Oracle ("in the sky")
 - receives input \(x \) and returns \(h(x) \)
 - for any \(x \in \{0,1\}^* \), \(|h(x)| = d \) bits.
 - On input \(x \):
 - if \(x \) not in book:
 - flip coin \(d \) times to determine \(h(x) \)
 - record pair \((x,h(x)) \) in book
 - else return \(y \) where \((x,y) \) in book

- Gives random answers, but use of book ensures consistency.

[Diagram of Alice and Bob interacting with Oracle and book]

[Text: Alice & Bob get some answer to x.]
Random Oracle Model

Many crypto schemes proved secure in ROM ("Random Oracle Model") which assumes existence of RO.

Then RO is replaced by hash function (e.g. SHA-256) in practice, which is hopefully "pseudorandom enough" that adversary can't exploit any flaws in SHA-256.
OW

\[x \in \{0,1\}^* \]
\[y = h(x) \]

CR

Hash function desirable properties:

1. "One-way" (pre-image resistance)

"Infeasible", given \(y \) to find any \(x' \) s.t. \(h(x') = y \) (\(x' \) is a "pre-image" of \(y \))

(\(\{0,1\}^* \rightarrow \{0,1\}^d \)

(Note that a "brute-force" approach of trying \(x \)'s at random requires \(\Theta(2^d) \) trials (in ROM).)

2. "Collision-resistance" (strong collision resistance)

"Infeasible" to find \(x, x' \) s.t. \(x \neq x' \) and \(h(x) = h(x') \) (a "collision")

(\(\{0,1\}^* \rightarrow \{0,1\}^d \)

In ROM, requires trying about \(2^{d/2} \) \(x \)'s \((x_1, x_2, \ldots) \) before a pair \(x_i, x_j \) colliding is found. (This is the "birthday paradox".)
Note that collisions are unavoidable since

\[|E_{0,1^d}^x| = \infty \]
\[|E_{0,1^d}^{x^d}| = 2^d \]

Birthday paradox detail:

If we hash \(x_1, x_2, \ldots, x_n \) (distinct strings) then

\[
E(\# \text{ collisions}) = \sum_{i \neq j} \Pr\left(h(x_i) = h(x_j) \right)
\]

\[
= \binom{n}{2} 2^{-d} \quad \text{[if } h \text{ "uniform"]}
\]

\[
= \frac{n^2 2^{-d}}{2} \]

This is \(> 1 \) when \(n > 2^{(\log_2 n)/2} \approx 2^{d/2} \)

The birthday paradox is the reason why hash function outputs are generally twice as big as you might naively expect; you only get 80 bits of security (w.r.t. CR) for a 160-bit output.

With some tweaks, memory requirements can be dramatically reduced.
TCR

3) "Weak collision resistance" (target collision resistance, 2nd pre-image resistance)

"Infeasible" given \(x \in \mathbb{Z}_p \), to find \(x' \neq x \) s.t. \(h(x) = h(x') \).

Like CR, but one pre-image given & fixed.

(In ROM, can find \(x' \) in time \(\Theta(2^d) \) (as for OW, since knowing \(x \) doesn't help in ROM))

PRF

4) Pseudo-randomness

"\(h \) is indistinguishable under black-box access from a random oracle"

(To make this notion workable, really need a family of hash functions, one of which is chosen at random. A single, fixed, public hash function is easy to identify...)

NM

5) Non-malleability

"Infeasible", given \(h(x) \), to produce \(h(x') \) where \(x \) and \(x' \) are "related"

(e.g. \(x' = x + 1 \)).

These are informal definitions...
Theorem: If \(h \) is CR, then \(h \) is TCR.
(But converse doesn't hold.)

Theorem: \(h \) is OW \(\iff \) \(h \) is CR
(neither implication holds)

But if \(h \) "compresses", then \(\text{CR} \Rightarrow \text{OW} \).

Hash function applications

1. Password storage (for login)
 - Store \(h(PW) \), not PW, on computer
 - When user logs in, check hash of his PW against table.
 - Disclosure of \(h(PW) \) should not reveal PW (or any equivalent pre-image)
 - Need \(\text{OW} \)

2. File modification detector
 - For each file \(F \), store \(h(F) \) securely
 (e.g. on offline DVD)
 - Can check if \(F \) has been modified by recomputing \(h(F) \)
 - Need \(\text{WCR} \) (aka \(\text{TCR} \))
 (Adversary wants to change \(F \) but not \(h(F) \).)
 - Hashes of downloadable software = equivalent problem.
Digital signatures ("hash & sign")

PKₐ = Alice's public key (for signature verification)
SKₐ = Alice's secret key (for signing)

Signing: \(\sigma = \text{sign} \left(SKₐ, M \right) \) [Alice's sign on M]

Verify: \(\text{Verify} \left(M, \sigma, PKₐ \right) \in \{ \text{True, False} \} \)

Adversary wants to forge a signature that verifies.

- For large M, easier to sign \(h \left(M \right) \):

 \(\sigma = \text{sign} \left(SKₐ, h \left(M \right) \right) \) ["hash & sign"

 Verifier recomputes \(h \left(M \right) \) from M, then verifies \(\sigma \).

 In essence, \(h \left(M \right) \) is a "proxy" for M.

- Need CR [Else Alice gets Bob to sign \(x \),
 where \(h \left(x \right) = h \left(x' \right) \), then claims
 Bob really signed \(x' \), not \(x \).]

- Don't need DW (e.g. \(h \) = identity is OK here.)
Commitments

- Alice has value \(x \) (e.g. auction bid).
- Alice computes \(C(x) \) ("commitment to \(x \))
 & submits \(C(x) \) as her "sealed bid".
- When bidding has closed, Alice should be able to "open" \(C(x) \) to reveal \(x \).
- **Binding property**: Alice should not be able to open \(C(x) \) in more than one way!
 (she is committed to just one \(x \)).

- **Secrecy (hiding)**: Auctioneer (or anyone else) seeing \(C(x) \) should not learn anything about \(x \).
- **Non-malleability**: Given \(C(x) \), it shouldn't be possible to produce \(C(x+1) \), say.

- **How**: \(C(x) = h(r \| x) \quad r \in \mathbb{F}_2 \quad h = \text{SHA-256} \)
 To open: reveal \(r \) & \(x \)

- Note that this method is randomized (as it must be for secrecy).

- Need: \(OW, CR, NM \)
 (really need more, for secrecy, as \(C(x) \) should not reveal partial information about \(x \), even.)