
1

An Overview and Analysis of Voice Authentication
Methods

Annie Shoup, Tanya Talkar, Jodie Chen, Anubhav Jain
ashoup, tjtalkar, jodiec, ajain94

Abstract—Current solutions for passwords and au-
thentication are insecure and have been hacked very
regularly. As more and more information is on the
Internet, the need for secure authentication has be-
come ever more necessary. Biometric based authen-
tication provides a promising solution because voice
biometrics, like fingerprints, create unique identifiers
for individuals. We present an analysis of current voice
biometric software, propose a security policy for a
voice authentication system, and provide two differ-
ent implementations of potential voice authentication
systems that aim to fix some of the deficits of the
available open source solutions. In addition, we provide
an evaluation of the advantages and disadvantages of
our own implementations. Our code is available in
a public repository at https://github.mit.edu/jodiec/6857
and https://github.mit.edu/ashoup/dejavuDemo.

I. INTRODUCTION

Over the past few years, it has become increasingly
more popular to use voice recognition for applications.
Applications such as Google Now and Siri are able to
transcribe audio and understand what a user is saying.
Some of these applications are also able to uniquely
identify the individuals. At the same time, applications
such as Shazam and projects like MusicBrainz have
been able to identify music using only 2-3 seconds
of recorded music. Audio processing has traditionally
been too computationally expensive to be able to
be done locally–however, that is changing as new
processing algorithms are being created. New initia-
tives are also providing clever ways of using audio
for two factor authentication. SlickLogin (acquired
by Google) enabled two-factor authentication using
audio by playing almost inaudible sounds through a
computer’s speakers and using a smartphone app to
listen to the sound, analyze it, and verify it to the
server. The sounds generated were unique to each user
and secure so that they could not be played back again
later.

As voice-based authentication has evolved, two dif-
ferent approaches to authentication have emerged. The
first approach is to have an individual repeat the same

sentence multiple times and create a very general tem-
plate made up of the range of voice prints. When the
user speaks in the future, the new voice print generated
can be matched to their old voice prints–authenticating
the user. However, the downside to this approach is
that the voice print is more generic and thus can’t be
authenticated at the same level of accuracy that voice
prints generated with a single passphrase are. This is
the second approach–creating a voice print using a
single phrase or word and only storing that individual
voice print. However, when this approach is used, a
third party can record the authentication attempt and
replay it to gain access. We explored both of these
methods as a part of our survey of available voice
authentication techniques. We describe in the next few
sections our proposed approach that we hope will
accurately identify individuals through unique voice
prints. We also describe a prototype that we have built
in section VI.

II. MOTIVATION

Bonneau et al. [2] discuss the need to find a replace-
ment for passwords. They provide significant depth
into the analysis of biometrics as an alternative for
passwords. As more and more information and pro-
cessing is moved to the cloud, there is an urgent need
for even more secure methods to authenticate users.
Apple introduced and popularized fingerprint scanning
as an alternate method of being able to unlock iPhones,
severely hindering the ability to be able to commit any
harm with stolen cell phones. The major benefits of
biometric data are that it is hard to replicate and that it
is unique. However, while voice biometrics are unique,
there can be greater risk associated with using them
in lieu of passwords. Mainly, voice biometrics can’t
be changed like a password can, so if they’re leaked,
there are many more serious consequences [19][20].
Thus, we believe that voice-authentication may not be
good as a standalone method for authenticating users,
but will be a good option as part of a two-factor
authentication protocol. This way, even if passwords

https://github.mit.edu/jodiec/6857
https://github.mit.edu/ashoup/dejavuDemo


2

are obtained, the attacker will not be able to bypass
the biometric scan and access the user’s data.

Along with wanting to come up with a method for
making more secure user login, we explored what
the current landscape looks like for voice authenti-
cation. There are a few different services provided
by companies like Nuance, ArmorVox, Authentify,
and SpeechPro, however, these were all commercial
applications and thus did not provide access to the
internal models used to store voice prints. There were
few open source options that allowed developers to
drop in voice authentication into their application and
so we sought to create a solution that provided a
method of providing two-factor authentication using
voice biometrics as the second form of authentication.
Since we found deficiencies with several of the open
source implementations, we also tried to implement
our own voice authentication system (section VI) as a
proof of concept that solves some of the security issues
in the open source versions.

III. SECURITY POLICY AND THREAT MODEL

Before the analysis of already existing open source
solutions and the implementation of our voice authenti-
cation system, we defined a security policy and threat
model which outlined the scope of our project and
guided our decisions.

A. Voice Authentication System

The authentication system consists of a client side
application and a server. The client side application
will reside on a party’s device, whether that be a
mobile device, personal computer, or tablet. The sys-
tem will need access to the recording mechanism on
the device on the client side and be connected to
the Internet. The client side application will make
API calls to the server to authenticate users, sending
over the recorded audio files over the Internet. The
server will analyze the audio, fingerprinting it and
determining whether or not the user is the one that he
or she is trying to authenticate as. Due to imperfections
in voice fingerprinting, the system is intended to be
used as a second factor in two-factor authentication.
The server stores the voice features associated with
a user’s account through an enrollment phase where
multiple audio samples from one user are utilized to
extract features and generate a general voice fingerprint
for a user.

B. Person of Interest

The person of interest is a user who has or will
create an account in the voice authentication system.

If the person of interest has an account in the voice
authentication system, the person of interest may log
into their account using voice authentication. In the
solutions we have analyzed and in our implementation,
we assume that the person of interest has successfully
provided the first factor of two-factor authentication.
The person of interest is the only person who will be
able to log into their account. They do not need to own
the device with which they are using to log in. This
person will state a phrase given to them by the voice
authentication system, and will be told whether or not
their voice belongs to the account they are trying to
log into.

The person of interest may also enroll in the voice
authentication system if they do not have an account
in the system. the person of interest should be the
only person that will be able to enroll their voice
features in the voice authentication system. A person of
interest will enroll in the voice authentication system
by saying phrases, which will then be recorded and the
features of the audio are then analyzed in the system.
By enrolling in the system, the system also creates an
account for the person of interest associated with those
features. In the case of two-factor authentication, these
features are stored in the previously made account
associated with the user. In order to log into the system,
the person will attempt to authenticate themselves by
speaking a new phrase provided to them. A person suc-
cessfully authenticates themselves when the features of
the voice file match the features of the voice that is
recorded in the system from enrollment.

C. Attacker

An attacker will attempt to gain access to the person
of interest’s account. We define that, using our system,
the attacker will not be able to use their own voice
to gain access to the account, as the voice has to
match what has been recorded in the system from
enrollment. The attacker should also not be able to
replay a recorded version of the voice of person of
interest to gain access to the system without having
that person present.

Since our system design is not intended for building
a secure server, we assume that the attacker does not
have the ability to bypass the voice authentication
system and gain access to the model used to authen-
ticate. Thus, we assume that the attacker will not be
able to construct a set of features which will pass the
authentication system by targeting the model used.



3

IV. ANALYSIS OF CURRENT AVAILABLE OPTIONS

We explored three different speaker recognition
and audio fingerprinting options: Microsoft’s Speaker
Recognition API [10], Bob [1], and Dejavu [4]. We
analyze Microsoft’s API and Bob in this section and
explore the security of Dejavu in section V.

A. Microsoft Speaker Recognition API

One of the libraries we explored was the Microsoft
Speaker Recognition API. This is one of the publicly
available APIs that advertises verification and iden-
tification. The API requires the creator of the web
application to sign up for an account, after which they
receive a private key that they include in their request
header. To enroll a user into the system, there needs
to be 60 seconds of speech, excluding any silences. To
authenticate a user, the system takes in any audio of a
user speaking.

This API is extremely accurate and is able to strip
out most background noise so the user can be in a noisy
environment. The application is also computationally
fast, so the user does not have to wait long before they
receive a response about their authentication.

The API does have some fall backs, however. First,
the enrollment phrases are all standard, and are pro-
vided on the website, so an attacker can know which
enrollment phrases might be used by a user and can
pre-record these phrases. The phrases can be played
back if an attacker is attempting to hack into an
account, and the service will authenticate the attacker
as there is no specific audio passphrase needed for
authentication. Since the enrollment phrases are set,
an attacker can also record the enrollment phrase and
create another account with the same voice fingerprint
as the user, leading to potential difficulties in authen-
tication.

Secondly, the API request can be intercepted, and
the contents can be replaced, since there is no hashing
done to sign the request and the private key is provided
in the header as plaintext and could be extracted.
The attacker can then put in their own recordings for
enrollment and authentication. The API also doesn’t
necessarily need real time recording of a passphrase,
and can also take in a pre-recorded sound file. This
means that an attacker does not need to replay the
audio to authenticate or enroll, but can also just submit
the recorded audio. Though developers can get rid
of this feature when implementing the API, it still
causes a security risk if the attacker gets access to
that recording or uses a recording to attempt to log in.

The service is also pay-to-use depending on how
many requests are received, which may not be sus-
tainable for large scale systems with many users. It is
also not open-source, and therefore if any parameters
need to be tweaked by the developer, then they won’t
be able to make those changes as needed.

B. Bob

We also attempted to use Bob, a signal-processing
and machine learning toolbox developed by the Bio-
metrics group at the Idiap Research Institute. This
library has been used in other speaker recognition
applications, and therefore we had believed it might
help in the creation of our application. However, we
found that there were many incompatible dependen-
cies, and the dependencies that could be installed
took up a lot of memory on our devices. Looking at
the voice corpus that was provided, we would have
had to process any user’s recording with many filters
before getting it into the desired format. Consequently,
running any experiments for speaker recognition would
take computationally longer than we wanted. Due to
these constraints, we decided against using Bob for our
speaker recognition application.

V. USAGE OF AUDIO FINGERPRINTING

After looking at a variety of potential voice au-
thentication libraries, the python audio fingerprinting
library, Dejavu [4], seemed to be the best existing
library to further explore due to its lightweight nature,
easy usability, and accuracy. Dejavu uses the process
of audio fingerprinting to match audio samples. Audio
fingerprinting involves taking fast Fourier transforms
in overlapping windows over the length of the audio
sample to create a 2D array spectrogram, in which
amplitude is a function of time and frequency. From
this spectrogram, corresponding frequencies and times
of amplitude peaks are extracted. Finally, the peak
frequencies together with the time differences between
the peaks are hashed. This hash is used to represent
a unique audio fingerprint for a small window of the
sample. Thus each sample is represented by a number
of audio fingerprints. These fingerprints for an audio
sample are then compared to existing fingerprints in
a database to identify the most likely existing sample
that the test sample is from. The technique of audio
fingerprinting is commonly used in music recognition
apps such as Shazam and SoundHound.

With this in mind, there are a few obvious advan-
tages to using Dejavu for voice recognition. Dejavu
is extremely accurate in matching audio samples even



4

with varying levels of background noise. Additionally,
Dejavu is able to correctly match relatively short
audio samples. Compared to other libraries that require
30 seconds of voice recording, Dejavu is able to
achieve perfect accuracy with only five seconds of
voice recording. All of these factors contribute to a
fast, easy, and accurate voice recognition tool.

However, with these advantages also come disad-
vantages. Specifically, Dejavu’s accuracy comes from
matching audio samples, not voice samples. Conse-
quently, the enrollment and authentication phrases for
a user must be the same. This makes our system vul-
nerable to replay attacks in which an adversary could
record the user during the enrollment or authentication
phase and then replay this recording to successfully log
into the system. Additionally, because a user’s voice
fingerprint is very specific, any decrement or change,
such as a cold, to a user’s voice might leave the user
unable to successfully log into the system.

While Dejavu presented audio fingerprinting instead
of voice fingerprinting, we wanted to initially pursue
that route as it provided us with the ability to create
an initial demo of our system. We built a simple Web
API wrapper around Dejavu that provided the ability
to register new users and then provide authentication
for users. We envisioned our implementation to serve
as the second authentication method in a two-factor
authentication system. Thus, we created a simple web
application which required both a password and a voice
sample to login, using the Dejavu API that we built.

Our web application is accessible at
128.30.31.185:8080, screenshots from the web
application can be seen in Figure 1. The code
for the Dejavu wrapper is available in the
server.py file at https://github.mit.edu/jodiec/6857
and the frontend application code is available at
https://github.mit.edu/ashoup/dejavuDemo. The Web
API provides two different methods, /register and
/authenticate. The register endpoint supports
POST requests with four parameters, username and
three files. These files are used to train Dejavu on the
user’s voice and we ask for three samples of the same
passphrase. The /authenticate endpoint supports
POST requests with two parameters, username and a
single voice file with the same passphrase. Our API
expects the end user application to store which words
were used to log the user in so that they will repeat
the same passphrase again in the audio sample. This
endpoint returns the confidence level and match if
the voice sample is matched with a user’s previous
voice sample, or otherwise returns a Failure which
can prompt the end user application to try and let the

Fig. 1. (1) The screen for signing up. A user enrolls by entering in
a username and uploading audio files. (2) The log in screen, a user
enters in a username and password. (3) If the password is correct,
the user then uploads a recording of them saying their passphrase.
(4) If the voice fingerprint does not match, then the user is unable
to log into their account.

user re-run the voice authentication.
While this worked, it presented a very brittle solu-

tion to our problem as the voice authentication was
more audio verification. It also was vulnerable to
replay attacks as mentioned earlier. We wanted to
explore alternative solutions that provided more robust
voice fingerprinting.

VI. GMM IMPLEMENTATION

We decided to implement our own voice authentica-
tion system as a proof of concept, utilizing a Gaussian
Mixture Model (GMM) to cluster based off of features
extracted from audio spectrums.

In our implementation, the process for creating an
account is (Figure 2):

1) Enroll user through randomly generated words
2) Speech recognition to make sure user’s words

match the generated words
3) Attempt voice activity detection
4) Extract and normalize MFCC features
5) Train Gaussian Mixture Model
The process for authenticating an account is similar

as we perform similar signal processing (Figure 3):
1) Ask client for the username of the account they

want to log into
2) Ask client to speak randomly generated words
3) Speech recognition to make sure user’s words

match the generated words
4) Attempt voice activity detection
5) Extract and normalize MFCC features

https://github.mit.edu/jodiec/6857
https://github.mit.edu/ashoup/dejavuDemo


5

Fig. 2. A screenshot taken of our enrollment process. A user says
three different phrases of 8-10 random words.

6) Find best log-likelihood out of all the Gaussian
Mixture Models

7) Log the user in if the Gaussian Mixture Model
with the best log-likelihood belongs to the ac-
count that the client is attempting to log into

Our own implementation of a voice authentication
system attempts to address the deficiencies in several
of the voice authentication methods that we have
analyzed in section IV and addresses our threat model.
We decided to do this by (1) enrolling users through
randomly generated words and (2) authenticating users
through randomly generated words. By doing this, we
mitigate the effects of an attacker having access to
some number of voice clips of a potential user. We do
not depend on a single spoken passphrase and instead
rely on a user’s unique voice features just as Dejavu [4]
does. By requiring users to authenticate by speaking
randomly generated words, that prevents users from
being logged in just by their voice alone like the
Microsoft Speech Recognition API [10]. Similarly, by
enrolling through randomly generated words, we ad-
dress our concerns about Dejavu and Microsoft Speech
Recognition API’s vulnerability to an attacker having
access to a user’s voice recordings for enrollment
phrases.

When classifying a user attempting to log in, the
features for the newly recorded audio are compared
to the user’s cluster to ensure that they are similar.
The resulting application is a command line tool that
allows users to either log into an account or to create
an account. Our tool successfully authenticates users
based on their unique voice features. The code for our
command line program is available in the public repos-
itory at https://github.mit.edu/jodiec/6857. Our hope is
that the tool we built can be successfully built upon by

others as the second part of a two-factor authentication
scheme.

A. Rationale Behind GMM

We used a GMM instead of other machine learning
algorithms because, as indicated in the work done
by Reynolds et. al. [15], it is especially useful in
speaker recognition. The model combines multiple
Gaussian distributions, assuming that feature vectors
are independent. A model is computed for each speaker
by extracting features out of initial phrases given to
the speaker. When the speaker attempts to log in,
features are once again extracted from a phrase that is
provided to them. Using an equation for log likelihood,
we calculate the likelihood that the features extracted
belong in the model of the user attempting to log in,
or whether there are other models that better fit these
features. If the features match the model of the speaker
attempting to log in, we can conclude that the speaker
is correctly logging into their own account.

B. passphrase

Rather than a traditional passphrase that is unique
to every user, we randomly generate passphrases each
time a user attempts to log in. Using the python library
RandomWords [14], we generate between 8-10 random
words every time a user has to say a passphrase. Then,
using the python library SpeechRecognition, we extract
the words that the user has said using the Google API
integrated into SpeechRecognition [18]. This is used
to make sure that the speaker is actually repeating the
words that were provided to them. Using the Python
library FuzzyWuzzy [6], we fuzzy match the words
generated by the Google API to the words we expect. If
the fuzzy matching score is greater than 85, computed
by the Levenshtein distance, a way to measure the
distance between two strings [7], then we accept the
passphrase. If not, then we generate a new passphrase
for the speaker to recite, and will keep generating until
they are able to say the correct words. In addition, if
the speaker does not start speaking within one second
of when the words appear on the screen, then the
recorder times out, and we generate a new set of
random words.

C. Enrollment

When a user decides to enroll into the system, they
must first provide a unique username. Then, back-
ground noise of their current location is recorded for
filtering purposes (subsection VI-D). The user is then

https://github.mit.edu/jodiec/6857


6

Fig. 3. A screenshot taken from our login process. After creating an account, Anubhav is attempting to log in with his voice. Here
we have printed out the speech recognition results, the fuzzy matching ratio, the existing accounts, and the log-likelihood associated with each.

The string was ”basins minds vicinities licenses clothes barrels halyard bunks minuses” and python Speech Recognition interpreted
it as ”beeson’s mind facilities licenses clothes barrels howard dunks minuses.” While not exactly the same as the passphrase, the fuzzy ratio
of 86 means that the phrase Anubhav said was similar enough to the passphrase that it is likely that he read it. Also, as we can see, even if
Anubhav had given a different username, the log-likelihood associated with his account is higher than all the other log-likelihoods, so the
command line tool would not have let him access the other accounts.

asked to recite three randomly generated passphrases
of 8-10 words,as described above. Once the three
passphrases have been recorded, they are filtered and
models of their features are created.

D. VAD and LTSD

We want to ensure that we remove as much back-
ground noise from the recordings we take as possible.
To achieve this voice activity detection (VAD), we take
a five second recording of the background noise of the
speaker’s location. This becomes our baseline for any
noise in the passphrase recording.

From there, we use the long-term spectral diver-
gence (LTSD) algorithm [13] to detect envelopes of ar-
eas where the speaker is saying the passphrase words,
while leaving out all areas of noise. We accomplish
this by using the LTSD algorithm from X. Zhou et. al.
[21]. By finding appropriate parameters based off of
the background noise, we are able to create envelopes
that detect where the speaker is speaking and where
there are silences. Figure 4 below is an example of
the envelope generated from one of the passphrase
recordings. This LTSD generated envelope will be used
to extract the signal that is relevant and then passed
through the MFCC algorithm to extract features.

Fig. 4. This is an example of the envelope generated from a
passphrase recording. The spikes in the graph correspond to peaks
where the user has spoken a word

E. MFCC

The Mel-Frequency Cepstral Coefficient (MFCCs)
represents the short-term power spectrum of a sound.
It is used in Automatic Speech Recognition as a
technique to extract features from audio. MFCCs are
the most used features in speech recognition features
and are also present in voice fingerprinting implemen-
tations [16][21].



7

First, the signal is split into short time frames. For
each of these windows, we take the Discrete Fourier
Transform. The powers of this spectrum are mapped
onto the Mel scale, a logarithmic curve that models
pitches that are typically heard as equal in distance
from each other. We take the log of the powers at each
of the mel frequencies, and perform a discrete cosine
transform. The features that we extract, or MFCCs, are
the coefficients of the spectrum that we get from the
cosine transform [9].

We extract these features using
python speech features [12]. These are the features
we use in our Gaussian Mixture Model after
normalization using the mean and inverse standard
deviations.

F. Gaussian Mixture Model

To authenticate, we create a Gaussian Mixture
Model (GMM) for each user. A GMM is able to com-
bine multiple Gaussians together to form a distribution
which will reflect the likelihood of a feature vector
falling in a specific area, where the probability will
never be zero. The probability that a feature vector x
belongs to a model with K Gaussians is:

p(x|wi, µi,Σi) =
K∑
i=1

wiN (x, µi,Σi) (1)

where N (x, µi,Σi) is a normal distribution with mean
µi and variance Σi [15][21]. The wis affect the weight
that each Gaussian has on the model, and the sum of
the wis must equal one.

To create a model for each user, we take the features
from the three recordings and change our parameters–
w, µ,Σ–to maximize the log of the likelihood, or prob-
ability, that the feature vectors of the recordings belong
to the model with those parameters. This is done by
calling fit in Sci-kit learn’s GMM implementation
[17].

Once we’ve created the model, a user can attempt to
log in. After extracting the features, the log-likelihood
is computed for the features of the recording by using
score_samples in Sci-kit learn’s GMM imple-
mentation. score_samples returns the per-sample
likelihood of the data under the model [17]. We take
the model which yielded the highest log-likelihood. If
this model matches with the account that the user was
attempting to log into, then we return that the user has
successfully logged in and can access their account.
Otherwise, we return that the user is trying to log into
an account that does not belong to them. We were
unable to implement a threshold for the log-likelihood

to detect when an attacker is attempting to log into an
account and does not own one. This is because noise
in the authentication recording effects the values of the
log-likelihood, so we were unable to find a threshold
that worked in all cases. Possible improvements we
can make to this are addressed in section VII.

G. Signing and Authentication

One of the potential attacks against the system is
a man-in-the-middle attack. An attacker may listen on
an unencrypted network and possibly relay information
to either the client or the server. In our use cases,
the man-in-the-middle attack we are most concerned
about is the possibility of the attacker, Eve, sending
the server her own audio files in place of a user’s. If
Eve knows the random words generated by the server,
intercepts the user’s audio files, and then sends her
own audio files to the server, then the user will not be
able to access his or her account. Eve can prevent a
user from properly creating an account if this is done
during the enrollment process as the GMM will be
trained on Eve’s audio files. We protect against this
attack by sending over an audio file to the server as
well as a SHA256 hash of the audio file signed with
the client’s RSA private key. The server can verify if
the SHA256 hash of the audio file received is the same
as the one included in the signature. While accounting
for certificates was not implemented, we can imagine
that the public key of a user is verified by a trusted
certificate authority. Thus, Eve cannot alter the audio
file. If Eve alters the audio file, then the signature will
not match. If Eve alters both the audio file and the
signature, then the public key will not match the user’s
certificate.

We are not as concerned with Eve listening in on
the network for a user’s audio files as the string of
random words and their unique ordering results in a
huge computation space. Even if Eve records users
saying all potential words, it will require a lot of
computational power to find the right audio files to
string together. For most use cases, this is not an
issue. However, our implementation prevents against
this attack in our prototype by using RSA encryption
and symmetric key encryption [5].

When implementing, we found that we cannot just
use RSA to encrypt the audio file bytes as the length
of the audio file data is too long for the RSA key
size. Knowing this, we decided to use a combination
of both RSA encryption and symmetric key encryption.
When a client desires to log in, the server knows of
the client’s public key. The server then generates a



8

new symmetric key and sends the client the generated
symmetric key encrypted with the client’s public key.
Clients, when attempting to log in, send over a version
of the audio file’s bytes encrypted with the symmetric
key (which they obtained by decrypting with their RSA
private key). The server then decrypts the audio file
with the symmetric key. Thus, the audio file passed
along with the signature, mentioned in the man-in-the-
middle attack, is more accurately an encrypted audio
file.

VII. FUTURE WORK

While we have created a working voice authentica-
tion system, there are many improvements that can be
made to this system and to our voice authentication
security policy such that this method can reliably be
used in two-factor authentication.

A. GMM Improvements

When a user attempts to log in, features extracted
from the voice recording are used to compute the
log likelihood of obtaining those features for every
model that is currently stored on the system. For a
system which contains a large number of users, the
computation time for this could reach a point where
the latency of logging in becomes too high for the user.
It could also lead to potential attacks if an attacker
creates a bunch of dummy accounts just to introduce a
larger computation time, thereby affecting anyone who
tries to log into the system. As a potential solution,
we would like to look at modifying our GMM model
to be able to accommodate for clusters, combining
with the concept of K-means. Once we know which
models would most likely have a high log likelihood
for the features we are looking at, based off clustering
of the GMMs, we could then only analyze a subset
of the GMMs, thereby reducing computation time and
preventing any latency attacks. This will make our
system more scalable as well.

B. Replay Attacks

Even though we generate a list of random words
every time a user enrolls or tries to log in, there is a
limited vocabulary that we are pulling from - namely
English nouns provided in the RandomWords corpus -
and words have been repeated in passphrases multiple
times. For a malicious party, they could easily record
a user saying these words, and, at some point, build
up a large enough corpus such that they would be
able to log in as the user simply by replaying the

recorded audio spliced together (assuming they have
large enough computing power to perform this task
within a second). There are a couple of ways to fix
this. First, we could expand our corpus to contain more
words, which makes it harder for an attacker to record
all of the words being spoken. Secondly, we could
artificially introduce a noise into the signal recorded
that is unique to that session, and therefore if the noise
is detected in the recording, it will be discarded as a
replay attack.

C. Voice Generation Attacks

Similar to replay attacks, we believe that there may
be ways to regenerate an individual’s voice in the
future from a set number of samples. This would
enable individuals to be able to synthesize audio from
the challenge text that would be hard to discern for the
system. While this is not currently an issue in the real
world, we acknowledge that it could become an issue
in the near future and it is a flaw that future iterations
of the system should work to fix.

D. Securing Voice Print Data

As we mentioned earlier, while biometric infor-
mation is unique, it’s also something that cannot
be changed easily. Thus, there is an even higher
imperative to secure voice print data and the voice
models. This would apply to all applications using
voice biometric information, since if one application’s
samples were leaked, then other applications would be
vulnerable to attacks as well.

VIII. CONCLUSION

We present an analysis of current voice authen-
tication methods, a security policy as well as two
different implementations of ways of supporting bio-
metric two-factor authentication. Our implementations
provide simple ways to be able to drop in two-
factor authentication into existing applications, while
also presenting ideas for future work. By presenting
a voice biometric based authentication system, our
system paves the way for additional work in open
source biometric authentication systems. [19] [20]

REFERENCES

[1] “bob.bio.spear 2.0.4–Tools for running speaker recognition
experiments,” https://pypi.python.org/pypi/bob.bio.spear/2.0.4

[2] J. Bonneau et. al., “The Quest To Replace Passwords,” IEEE
Symposium on Security and Privacy, 2012, pp. 553-567

[3] P. Cano et. al., “A Review of Audio Fingerprinting,” Journal
of VLSI Signal Processing, 2005, pp. 271-284

https://pypi.python.org/pypi/bob.bio.spear/2.0.4


9

[4] “Dejavu: Audio Fingerprinting and Recognition in Python,”
https://github.com/worldveil/dejavu

[5] “Fernet (symmetric encryption),” https://cryptography.io/en/
latest/fernet/

[6] “FuzzyWuzzy,” https://github.com/seatgeek/fuzzywuzzy
[7] “Levenshtein Distance,” https://en.wikipedia.org/wiki/

Levenshtein distance
[8] “Man-in-the-middle Attack,” https://en.wikipedia.org/wiki/

Man-in-the-middle attack
[9] “Mel-Frequency Cepstrum,” https://en.wikipedia.org/wiki/

Mel-frequency cepstrum
[10] “Microsoft Cognitive Services: Speaker Recognition

API,” https://www.microsoft.com/cognitive-services/en-us/
speaker-recognition-api

[11] L. Myers, “An Exploration of Voice Biometrics,”
2004. https://www.sans.org/reading-room/whitepapers/
authentication/exploration-voice-biometrics-1436

[12] “python speech features,” https://github.com/jameslyons/
python speech features

[13] J. Ramirez et al., “Efficient voice activity detection algo-
rithms using long-term speech information,” Speech Commu-
nication, 2004, pp. 271-287.

[14] “RandomWords 0.2.0–A Useful Module for Random Text,
E-mails and Lorem Ipsum.,” https://pypi.python.org/pypi/
RandomWords

[15] D. Reynolds et al., “Speaker verification using adapted Gaus-
sian Mixture models,” Digital Signal Processing, 2000, pp.
19-41.

[16] “Simple-Minded Audio Classifier in Python,” https://github.
com/danstowell/smacpy

[17] “scikit-learn Documentation–sklearn.mixture.GMM,”
http://scikit-learn.org/stable/modules/generated/sklearn.
mixture.GMM.html

[18] “SpeechRecognition 3.4.3–Library for Performing
Speech Recognition,” https://pypi.python.org/pypi/
SpeechRecognition/3.4.3

[19] “Why Fingerprints, Other Biometrics Don’t Work,” USA
Today, http://www.usatoday.com/story/cybertruth/2013/09/12/
why-biometrics-dont-work/2802095/

[20] “Why Haven’t Biometrics Replaced Passwords Yet,”
Digital Trends, http://www.digitaltrends.com/android/
can-biometrics-secure-our-digital-lives/

[21] X. Zhou et. al., “Digital Signal Processing: Speaker
Recognition,” https://raw.githubusercontent.com/ppwwyyxx/
speaker-recognition/master/doc/Final-Report-Complete.pdf

https://github.com/worldveil/dejavu
https://cryptography.io/en/latest/fernet/
https://cryptography.io/en/latest/fernet/
https://github.com/seatgeek/fuzzywuzzy
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
https://www.microsoft.com/cognitive-services/en-us/speaker-recognition-api
https://www.microsoft.com/cognitive-services/en-us/speaker-recognition-api
https://www.sans.org/reading-room/whitepapers/authentication/exploration-voice-biometrics-1436
https://www.sans.org/reading-room/whitepapers/authentication/exploration-voice-biometrics-1436
https://github.com/jameslyons/python_speech_features
https://github.com/jameslyons/python_speech_features
https://pypi.python.org/pypi/RandomWords
https://pypi.python.org/pypi/RandomWords
https://github.com/danstowell/smacpy
https://github.com/danstowell/smacpy
http://scikit-learn.org/stable/modules/generated/sklearn.mixture.GMM.html
http://scikit-learn.org/stable/modules/generated/sklearn.mixture.GMM.html
https://pypi.python.org/pypi/SpeechRecognition/3.4.3
https://pypi.python.org/pypi/SpeechRecognition/3.4.3
http://www.usatoday.com/story/cybertruth/2013/09/12/why-biometrics-dont-work/2802095/
http://www.usatoday.com/story/cybertruth/2013/09/12/why-biometrics-dont-work/2802095/
http://www.digitaltrends.com/android/can-biometrics-secure-our-digital-lives/
http://www.digitaltrends.com/android/can-biometrics-secure-our-digital-lives/
https://raw.githubusercontent.com/ppwwyyxx/speaker-recognition/master/doc/Final-Report-Complete.pdf
https://raw.githubusercontent.com/ppwwyyxx/speaker-recognition/master/doc/Final-Report-Complete.pdf

	Introduction
	Motivation
	Security Policy and Threat Model
	Voice Authentication System
	Person of Interest
	Attacker

	Analysis of Current Available Options
	Microsoft Speaker Recognition API
	Bob

	Usage of Audio Fingerprinting
	GMM Implementation
	Rationale Behind GMM
	passphrase
	Enrollment
	VAD and LTSD
	MFCC
	Gaussian Mixture Model
	Signing and Authentication

	Future Work
	GMM Improvements
	Replay Attacks
	Voice Generation Attacks
	Securing Voice Print Data

	Conclusion
	References

