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Abstract

We devise and implement a scheme that allows a voter to vote at a
polling station or supervised location and then allows the voter to leave
the polling station and check that their vote has been counted correctly
and that everyone in a given population group has voted once all while
maintaining anonymity of choices for all voters.

We show a proof of concept in the polling scenario and discuss
practicality for use now and in the future given legal, social, financial,
and computing limitations and allowances. We propose possible solu-
tions to some limitations and go on to talk about trade-offs between
the various work-arounds in anonymity, security, transparency and
error-catching.

1 Introduction

1.1 Voting

Voting is one of the cornerstones of modern governments across the world. In
practice, nearly every country in the world holds elections in which at least
some subset of the population cast a vote to make decisions about political
leaders, laws and other bills that can range from fiscal appropriations, to dec-
larations of war.[6] In the United States all adult citizens have the right to
vote in federal elections including presidential, Senate, and House of Repre-
sentatives elections. Apart from federal elections, citizens also vote in various
state and local elections that can include town, county and special district
elections for leaders in specific functions. Both state and federal elections are
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conducted by the state government in each state such that procedures vary
from state to state.[1]

Voting is a unique task for a few reasons. First, voting is very important
people because it has the potential to directly affect the decisions made
by government. In addition, due to social pressures of elections, it is very
important that voting systems allow a person to be completely anonymous
in their choices. Lastly, it is important that each voter receive the exact
share of voting influence which they are entitled. So, we see that voting as a
task is very intolerant to tabulation errors, it must be able to prevent voter
fraud so that people do not gain a greater share of influence in the outcome,
it must be anonymous, and most importantly it must be transparent so that
all voters can be sure that the system functions exactly as it says it does.

Electronic voting or e-voting encompasses a wide range of the use of
electronic devices in the voting process. It includes voting solutions that
automate anything from small tasks like marking choices on a paper ballot
to full automation of registration, identification, vote cast, tallying, and pro-
duction of fully tabulated results. Fully automated e-voting that performs
according to the specifications laid out has many benefits from possibly re-
ducing overall cost to a smaller environmental impact. The most important of
these benefits is that electronic voting has the ability to offer complete trans-
parency for public vote tallying and checking, complete vote anonymity, and
a homogenous voting process for all people. We use this paper to describe
an implementation of a system which provides all of those most important
benefits.

For the purposes of this paper, we sought to implement a system that
allows voters to cast a vote and verify within a certain population that 1)
their own vote had been cast and added to the tally 2) every other person
in the given population had voted only once all without compromising the
anonymity between a voter and their choice (i.e. Alice being able to de-
termine what Bob had voted). Before describing the implementation of the
systems, we must lay the groundwork for the different cryptographic princi-
ples we utilize before delving into the intricacies of our system.
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1.2 Mathematical Foundation

1.2.1 Homomorphic Encryption

With the introduction of fully homomorphic encryption by Gentry in 2009,
the possible world of encryption applications was broadened. Our system
uses homomorphic encryption, allowing the system to encrypt a single vote
for a person into ciphertext where it is then sent to be posted and tabulated
publicly.[2] Homomorphic encryption is a form of encryption that allows com-
putations to be carried out on the ciphertext. Therefore, when the resulting
ciphertext is decrypted, the result matches the result of the same computa-
tion on the original plaintext message. A traditional partially homomorphic
encryption system is one that allows one or some types of operations to
be carried out on the ciphertext. Whereas a fully homomorphic encryption
scheme allows arbitrary computation on the ciphertext. The scheme does
not fit into either of these categories. Our scheme allows for an arbitrary
type of computation to be carried out. In this way it is unlike traditional
methods of partial homomorphic encryption. On the other hand, our scheme
has limited circuit depth. This means that only a limited number of opera-
tions can be performed until the ciphertext will not accurately decrypt into
the identically computed plaintext. This limitation stems from the use of
learning with errors to aid in encryption. This is a limitation we are willing
to accept as it will not be the limiting factor in our system’s scalability.[4, 8]

1.2.2 Learning with Errors

Learning with errors (LWE) is a problem that stems from the field of machine
learning. It states that for (x, y) for x ∈ Zdq , y ∈ Zq, ε , in a linear function
f(x) + ε 7−→ y where ε is an arbitrary noise function, an algorithm will
be able to recreate f . This problem is conjectured to be hard to solve.
More recently, Regev (2005) has shown that LWE is at least as hard as
several worst case lattice problems and has shown a reduction to the learning
parity problem. We use these proofs as evidence that learning with errors
is sufficiently difficult to use in our encryption problem. However, it is now
clear as to why our scheme has limited circuit depth. By using an additive
noise model on each ciphertext, will accumulate noise over operations and
eventually, should enough noise accumulate in the message, we would no
longer be able to recover the message text.[7]
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2 Encryption Scheme Overview

We base our encryption scheme off of Gentry’s 2013 Fully Homomorphic
Scheme which relies on the LWE hardness problem[4] Our main contribution
is modifying this scheme so that one can combine ciphertexts encrypted under
different keys in order create ciphertexts encrypted under the sum of both
keys, without knowing either key.

All of the operations we will be doing will be in the field Zq, where
q = 2k for some integer k. We will defin n to be our lattice dimension, and
N = n log2 q to be our ciphertext dimension.

In our scheme a ciphertext C ∈ {0, 1}N×N encrypting message µ ∈ Zq
has the form

CPv = 2µPv + e

where v ∈ Znq is the secret key, e ∈ ZNq is a small noise vector, and P ∈ ZN×nq

is a public invertible matrix that

a. Simultaneously diagonalizes C with every other ciphertext encrypted
under the same public P , such that P−1CP = D where D is a diagonal
matrix. In this way, all ciphertexts C commute.

b. Preserves the value of C under “flattening”. We will describe a flatten-
ing operation Flatten(C) which makes the entries of C small, while
retaining that

Flatten(C)P = CP

2.1 Homomorphic operations

In order to add the values of two ciphertexts we simply add the ciphertexts
and flatten the result

Add(C1, C2) = Flatten(C1 + C2)

Which returns the following

Add(C1, C2)Pv = Flatten(C1 + C2)Pv

= (C1 + C2)Pv

= 2(µ1 + µ2)Pv + (e1 + e2)
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In order to multiply the values of a ciphertext by a constant like

Mul(α,C) = Flatten(Flatten(α · IN) · C)

Mul(α,C)Pv = Flatten(Flatten(α · IN) · C)Pv

= Flatten(α · IN)CPv

= Flatten(α · IN)(µPv + e)

= αµPv + Flatten(α · IN)e

Note that if the error is initially bounded by B, addition increases that bound
by a factor of 2 and multiplication increases it by a factor of N . The noise
increase in both is independent of the message µ.

2.2 Ciphertext Combination

If ciphertexts C1 and C2, encrypting message µ under secret keys v1 and v2

respectively, they can be combined into a ciphertext C12 encrypting µ under
v1+v2, without knowing either secret key. If µ = 0, then Combine0(C1, C2) =
Flatten(C1C2):

Combine0(C1, C2)P (v1 + v2) = C1C2Pv1 + C1C2Pv2

= C2(2µPv1 + e1) + C1(2µPv2 + e2)

= C2e1 + C1e2

If µ = 1 then Combine1(C1, C2) = Flatten(2C1 + 2C2 − C1C2 − 2IN):

Combine1(C1, C2)P (v1 + v2) =2C1Pv1 + 2C2Pv2 + 2C1Pv2 + 2C2Pv1

− C1C2Pv1 − C1C2Pv2 − 2P (v1 + v2)

=2(2µPv1 + e1) + 2(2µPv2 + e2) + 2C1Pv2 + 2C2Pv1

− C2(2µPv1 + e1)− C1(2µPv2 + e2)− 2P (v1 + v2)

=2µP (v1 + v2) + 2(e1 + e2)− C2e1 − C1e2

In the µ = 0 case, the noise increases by a factor of 2N and in the µ = 1
case the noise increases by a factor of 2N + 4.
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2.3 Flattening

We have made slight modifications to the operations described in [4] so that
they work on matrices. The 4 operations we will use are BitDecomp,
BitDecomp−1, PowersOf2 and Flatten with the following properties
for X, Y ∈ Zn×nq , C ∈ ZN×Nq

BitDecomp(X) ·PowersOf2(Y ) = XY

Flatten(C) ·PowersOf2(Y ) = X ·PowersOf2(Y )

= BitDecomp−1(X) · Y

Flatten(X) ∈ ZN×N
{0,1}

These functions and their properties form the basis of the encryption
scheme. Intuitively, BitDecomp takes a matrix and decomposes each of ele-
ments bitwise to make a wider matrix. BitDecomp−1 undoes the BitDecomp
operation, but is defined for general matrices not just bit matrices. Powersof2
takes each element a and vertically expands it into log2 q elements (a, 2a, . . . , 2log2 q−1a)

Algorithm 1 PowersOf2(X) = Y

for each row r and each column c of X do
for b = 0 to log2 q − 1 do

Y [b+ r log2 q][c]← 2b ·X[r][c]
end for

end for

Algorithm 2 BitDecomp(X) = Y

for each row r and each column c of X do
for b = 0 to log2 q − 1 do

Y [r][l + c log2 q]← bit b of X[r][c]
end for

end for
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Algorithm 3 BitDecomp(X) = Y

for each row r and each column c of Y do
Y [r][c]←

∑log2 q−1
b=0 2b ·X[r][l + c log2 q]

end for

Algorithm 4 Flatten(X) = Y

return BitDecomp(BitDecomp−1(X))

2.4 Construction of P

In order to construct P , we first generate a random invertible matrix Q ∈
Zn×nq . Then we can calculate P = PowersOf2(Q) and P−1 = BitDecomp(Q−1).
Note that P−1 is the left inverse of P :

P−1 · P = BitDecomp(Q−1) ·PowersOf2(Q)

= Q−1Q = IN

Since P = PowersOf2(Q), then Flatten(C)P = CP for all C ∈ ZN×Nq

2.5 Encryption

To encrypt a message we first generate a base ciphertext X, an encryption of
zero, and then use the homomorphic properties of X to encrypt other mes-
sages. To encrypt the base ciphertext, we first generate a random diagonal
matrix D ∈ ZN×N with odd entries. Let X = PDP−1. Note that all such
X’s are simultaneously diagonal under P and

Flatten(X)P = Flatten(X) ·PowersOf2(Q)

= X ·PowersOf2(Q)

= XP

So X remains simultaneously diagonal even if its flattened.
This X obeys the properties of ciphertexts but it has no associated secret

key. We need to generate a secretkey v that satisfies:

XPv = e

7



Where e is some small error vector. To do this, we generate a random error
vector e, then compute

v = D−1P−1e

D must have an inverse modulo q since all of its entries are odd.
A message µ can then be encrypted by computing C = Flatten(2IN+X).

CPv = (2µIN +X)Pv = 2µPv + e

A ciphertext encrypting a message µ is indistinguishable from a ciphertext
encrypting any other message without access to the secret key v, since C is
always of the form PDP−1, where D has odd entries.

2.6 Decryption

In order to decrypt ciphertext C encrypting a message µ ∈ {0, 1} with secret
key v, the vector Pv must have some component xi ∈

(
q
8
, 3q

8

)
and the noise

must be bounded ‖e‖∞ < q/4. Let yi be the ith component of CPv. Then

Dec(C,v) =
⌊
yi
2xi

⌉
. So if yi = 2µxi + ei, then⌊

yi
2xi

⌉
= µ+

ei
2xi

In order for the decryption to be valid it must be the case that 2µxi < q and∣∣∣ ei2xi

∣∣∣ < 1
2
, which are both supported by the bounds above.

3 Voting Scheme

3.1 Initialization

To initialize a vote, voting officials need only generate and publicize P and
P−1 as described above.

3.2 Vote Casting

Each user i ∈ [1,m] encrypts their vote µ ∈ {0, 1} under two different secret
keys v1

i and v2
i . They publicize the corresponding ciphertexts C1

i and C2
i in
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Algorithm 5 ChooseKeys

while true do
Randomly generate a choice {c1 . . . cm}.
x←

∑m
i=1 v

ci
i

if q/8 < x ≤ 3q/8 then
return x

end if
end while

addition to the first components of each secret key v1i and v2i . We then wish
to find a choice of ciphertext - secrey key pairs, {c1 . . . cm}, ci ∈ {1, 2} such
that q

8
<
∑m

i=1 v
ci
i ≤

3q
8

. This can be done as follows:
We are assuming that vi is distributed randomly enough that the sum of

all vi’s can be treated as a random variable. In expectation this algorithm
makes O(4) iterations. The probability of failure is (3/4)k, so this algorithm
will terminate in a constant number of steps with high probability.

Let Ci = Cci
i and vi = vcii .

3.3 Vote Combination

We now have m ciphertexts C1 . . . Cm each of which encrypts vote µi under
secret key v1 . . .vm respectively. Each user must now combine their vote
with each other vote to get a ciphertext Ci encrypted under v1 . . .vm. Since
0’s and 1’s are combined differently we must be careful when combining
ciphertexts not to reveal too much about a users vote.

To deal with this a user will randomly turn half of the public ciphertexts
into 0’s and half of the ciphertexts into 1’s. Then they will combine all 0’s
and 1’s together as described above.

If C encrypts µ ∈ {0, 1}, then Transform0(C) = Flatten(C(2IN−C))
encrypts 0.

Transform0(C)Pv = C(2IN − C)Pv

= 2CPv − CCPv
= 4µPv + e− C(2µPv + e)

= 4µPv + e− 4µ2Pv − 2µe− Ce
= ±e− Ce
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Algorithm 6 SharedEncrypt(µ, i)

while true do
Cµ ← Ci
C1−µ ← 2µIN
for ( do j = 1 to m, j 6= i)

b← {0, 1}R
Combineb(Cb,Transformb(Ci))

end for
return Combineµ(Cµ, 2IN − C1−µ)

end while

Similarly Transform1(C) = Flatten(2IN + C(2IN − C)) encrypts 1.
In order for a user to decrypt such a vote, they would need to find exactly

which messages were transformed into 0’s and which were transformed into
1’s, which takes 2m guesses.

3.4 Vote Counting

Once encrypted votes are encrypted under (v1 + . . . + vm), then the votes
can be counted by adding up all of the ciphertexts and flattening the result
due to homomorphic additivity.

Since we can only decrypt bit messages, we will then multiply the result
by 2(m)−1. The resulting bit is 1 if more than half of the m users voted for
candidate 1 and 0 otherwise.

3.5 Decryption

After the votes are counted we will have a ciphertext C encrypting a bit
represenging the winner encrypted under v1 + . . . + vm. In the registration
process we assured that the first entry of P (v1 + . . .+vm) is greater than q/8
and less than 3q/8. If each user publishes the first entry of their decryption xi
of the product CPvi, we can sum all of the personal decryptions to compute
the decryption:

µ =

⌊∑m
i=1 xi∑m
i=1 vi

⌉
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4 Security Analysis

This voting procedure assumes honest but curious voters. If a voter wanted to
they could simply return random bits during the decryption step to make the
decryption random. Additional measures would be taken to protect against
this attack.

However regardless of what a user does they will not be able to decrypt
a user’s vote. Although an adversary can compute polynomially many en-
cryptions under (v1 + . . . + vm), they will not be able to recover the secret
key itself due directly to the Learning with Errors problem[7] Additionally,
revealing the first entry of v does not reveal anything about v itself by the
Leftover Hash lemma[9]. A users base ciphertext is information theoretic
secure because for ciphertext encrypting C µ under v, there is a secret key
v′ under which it encrypts 1 − µ. Ciphertext combination is secure so long
as there are a large number of voters.

5 Runtime Analysis

Combining base ciphertexts requires O(m) N × N matrix multiplications.
The computation requires transforming ciphertexts into 0’s and 1’s which
increases the noise by a factor of (N+1), and combining all of the ciphertexts,
which increases the noise by a factor of (N + 4)dlog2me+1.

The depth of the tallying computation is also dlog2me, so there the noise
increase by a factor of N2dlog2me. The additional factor of N comes from the
last multiplication.

So the total error is ((N + 1)N2dlog2me(N + 4))dlog2Me+1B where B is the
initial error bound. As long as

N(N + 1)2dlog2me(N + 4)dlog2Me+1B <
q

4

then we can decrypt the message.
In order for the LWE problem to be hard B must be O(2Sqrt(n)) and

in order to achieve k-bit security, m and n must be at least k[7]. To get
a sense of perspective, let n = m = 128, achieving high security over a
reasonable voting size. q would have to be approximately 2160, meaning each
integer would take up 20 bytes of memory. Ciphertexts would be arrays of
size 20480 × 20480. With very heavy optimization multiplication of these
ciphertexts would take on the order of minutes on a modern laptop.
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6 Implementation

We have implemented all of the basic matrix operations described above in
C++. The implementaion can be found on github. However it would take
a significant amount of optimization - beyond the scope of this project - in
order to get rid of constant factor overhead and approach the asymptotic
runtime. So the implementation cannot handle our voting scheme even for
a small number of people, however it does demonstrate the properties the
system would have.

6.1 Inverse Modulo q

Finding the inverse of a matrix modulo q is not the same as finding one R.
In our implimentation we took advantage of the following algorithm to find
inverses [5]

Algorithm 7 Inverse(A)

Find X0, the modulo 2 inverse of A by Gauss-Jordan Elimination
C ← I −X0A
return (I + C2i)(I + C2i−1

) . . . (I + C) for i ≥ log2 log2 q

7 Practicality

Due to long computation times on average computers, this scheme is not
scalable to the level it would need to be for an election of a national scale.
Voting would take a long time if the whole country did it on their own
personal computer, and there is no guarantee that everyone will decrypt.
Many people also have limited access to computers, and the computers they
do have access to may be much less powerful than even the average computer.

Because of this, we discussed a new voting scheme that uses a combination
of the current voting scheme and our electronic voting scheme. This new
scheme would utilize the voting stations of the current scheme and instead
place a voting terminal there. Each district would have a terminal that would
have its own public key. Voters in this district would go to the terminal, input
their vote, and the terminal will encrypt and decrypt the vote. Voters will
be able to vote anonymously and ensure that they have been given their
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fair share of the vote. Because each station is now doing it’s share of the
decryption, much of work is taken off of the voter, and the system is still
decentralized. It is important that this voting scheme remain decentralized,
as the decentralization eliminates the chance of corrupt election officials, who
may be trying to find out how people voted, or sway the vote in some way.
Since the system is decentralized, all of the voting stations must collude
together in order to break the security of our system, which becomes very
unlikely as the number of stations increases.

8 Future Additions

Currently, this scheme assumes that voters are honest when they input their
vote. For example, if a voter were to encrypt a 2 instead of a 1 or a 0 the
decrypted result would turn into just noise. Since the result is not decrypted
all at once, knowing whether the result is just noise is very difficult until the
entire result has been decrypted. To fix this in the future, we could include
zero knowledge proofs to ensure that voters are only encrypting either a 0 or
a 1 and that they are being honest about their piece of the decryption.

9 Conclusion

Though this scheme, even with optimization, is currently not feasible for
many reasons, eventually personal computers will be powerful enough such
that an electronic voting scheme like this would work. Since we use a decen-
tralized approach to homomorphic encryption, any worry of corrupt voting
officials is eliminated; which makes this scheme better than a typical homo-
morphic electronic voting scheme, which would typically have some sort of
trusted entity that would hold the key to decrypt the answer. Homomor-
phic electronic voting as a whole is currently the best way to achieve voter
anonymity and eliminate voter coercion, voter fraud, and voter disenfran-
chisement. Our scheme comes with these benefits in addition to the benefits
that stem from decentralization.
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