
Hardening UDP Services against Response
Amplification Attacks

6.875 Project, Spring 2016
Robert Sloan rsloan@mit.edu
Hunter Gatewood hgatewood@mit.edu

Abstract
DNS amplification attacks are one of the most powerful and common denial of service
(DoS) attacks currently in use; and their existence is utterly preventable, totally the
result of the poor protocol design of DNS.
In this paper, we will explore both the finer details of amplification attacks, and present
as a number of novel techniques for hardening web services against amplification at-
tacks.

1 Amplification Attacks in-the-large

The general principle of distributed denial of service (DDoS) attacks is that an attacker
will send more traffic to a server than its network interface can deal with: as more
and more traffic floods the server and its routers, the attacker’s packets will fill up
available buffer space and cause the server to drop packets, many of which will belong
to legitimate clients, who will, as a result, be denied service.

The nuance of an amplification attack is that while the amount of traffic an attacker
can generate alone will be limited, we can amplify it to something that will cause trouble
in a variety of ways.

For example, in UDP protocols, we can spoof (or forge) a request from our target to,
for example, a DNS server; and that server will respond to our target. If the response is
larger than the request we had to send, then this will allow us to send that much more
traffic to our target.

In recent years, this attack – called DNS amplification – has become the most pop-
ular DDoS attack by an order of magnitude [14]. Attacks have reached rates of 300
Gigabits per second [9], wasting enormous amounts of web resources [8].

The fact that it’s still possible to do this is patently ridiculous, a result of the de-
centralized, “just-good-enough” [5] nature of the DNS, the necessarily public status of
DNS servers, and the high response-size asymmetry afforded by certain DNS queries
[11].

This paper aims to analyze these attacks, as well as provide novel techniques for
their mitigation that will require no meaningful change in the semantics of DNS.

2 The Why of DNS Amplification

DNS is fundamentally a query language; requests are queries for the records corre-
sponding to a given domain and the response lists those records. It is in this way
unsurprising that there is this request-response size asymmetry (up to a factor of 179
[11])

1

Gatewood, Sloan

Now, we see some obvious holes in this scheme:

– Why not return fewer records?

DNS is an eminently extensible protocol: servers can return arbitrary records, only
some of which are actually domain names – mail server (MX) records, DNSSEC
signature records, and TXT records are good examples of where this can get very
large [13].

Because DNS does not have a facility to specify exactly which records the
server should return, we generally return all of them to maintain backwards-
compatibility. It’s unclear if this issue is solvable with the DNS protocol.

– Why would the server respond to just anybody?

It shoudn’t, and it usually doesn’t; most Service Providers limit access to their
DNS servers to a specific IP range. Many, however, don’t bother to implement this
basic security measure, which we will revisit under the heading Open Resolvers.
Misconfiguration is another issue whose solution is unclear, given the diversity of
software distributions in use.

– Can we paginate or otherwise restrict the response?

Theoretically, we do: the DNS RFC dictates that UDP response sizes should be
limited to 512 bytes[10], requiring an additional TCP session to transact the rest.

In practice, however, we have seen much larger amplification rates, due in part to
some servers providing larger responses (which we have seen in Wireshark), but
also possibly because some clients are accepting TCP sessions they did not request
(which we could not replicate with glibc’s libresolv).

Either way, something is incorrect here, but determining exactly which vendors’
software is misbehaving is outside the scope of this project.

Other major issues follow:

2.1 Open Resolvers

Open Resolvers are name servers which will, as above, recursively serve any user, lead-
ing (perhaps unwittingly) to the crux of the amplification problem.

In the iterative mode of DNS, when a Name Server does not own the requested
resource (and assuming no caching), it replies to the query with the location of a name
server which is likely have the resource.

In the recursive method, however, a name server (after acting as the client itself)
returns the resource itself, rather than the location of a name server. This means any
server can return any record, of any size, which leads to the large amplification de-
scribed above[15].

According to recent estimates, there may be many tens of thousands of large open
relays currently operating, many from Chinese ISPs [16].

2.2 Decentralization

One of the hallmarks of the DNS is its decentralization, which, while important for
long-term stability, does lead to problems of coordination:

– We can’t update name server software consistently across vendors, which are glob-
ally distributed, multilingual, and intensely bureaucratic [12].

2

UDP-Hardening

– No centralized authority exists to affect a concerted effort toward mitigating DNS
amplification.

– We can’t penalize misbehaving servers: name servers utilized in an amplification
attack are not generally penalized legally or otherwise, and their administrators
have no incentive to update their software [12].

– Many embedded network devices make updating difficult or impossible.

3 EDNS and the Possiblity of Extension

As described above, we can ascribe a large portion of the blame to the DNS extensions
(so-called EDNS), which are used, for example, to support DNSSEC [2].

These protocol extensions do provide enormous utility (e.g. signing the DNS
records to prevent cache poisoning), and so removing EDNS makes little sense; but
couldn’t this capability be put to work for our own ends? We will discuss this in the
Weak Client Validation section.

4 Generally Workable Mitigation Strategies

4.1 Load-balancing and Redundancy

Most of the large websites (Google, Facebook, etc.) prevent this form of DDoS by sim-
ply being sufficiently well-replicated that there isn’t a single server to attack.

This method is most commonly supported by CloudFlare – a service that provides
caching, HTTPS, and other services to a website – and is becoming one of the best
defenses for DoS, especially for static websites via, for example, Amazon or Akamai’s
CDN 1.

It is, however, not feasible for all applications; and it does not seem sustainable
in general to simply assume that all relevant websites are run through a large CDN.
Certainly, individual corporate networks will still be vulnerable.

4.2 Server-level Filtering

As mentioned above, we really should be, on the server level, preventing this sort of
misconfiguration, by OS distribution-provided configuration files or otherwise (for ex-
ample, by providing default iptables, pf, or ufw rules).

This is, however, immensely difficult; and getting a distribution’s committers to
cooperate, we expect, will be well-nigh impossible and a political disaster.

4.3 Router-level Filtering

It is further possible to deal with this traffic on the router level: we can simply have the
service provider’s routers reject unestablished DNS responses, or stop large streams of
DNS traffic (a kill-switch method). This, however is infeasible for many reasons:

– Because the client port is unspecified, the router will not know a priori which traffic
is a DNS response [12].

– This would require dealing with hardware vendors individually

– The logic required would fall under the heading of Software-Defined Networking
(SDN): we created OpenFlow rules which would perform the appropriate routing.
However, SDN does not yet have enough adoption to make this approach viable.

1https://blog.cloudflare.com/deep-inside-a-dns-amplification-ddos-attack/

3

Gatewood, Sloan

4.4 Server-level Logic

Where we may be able to actually change something is in the DNS server software it-
self, with customized logic which maintains backward compatibility: changes to BIND
would – eventually – be pushed down to most Linux or BSD-based servers, which
comprise a large proportion of Internet servers.

Our candidate solutions will all be of this form: changes in the internal logic of
the BIND server which preserve correct behavior while making the execution of an
amplification attack much more difficult:

5 Proposed Hardening Strategies

5.1 Semantics of Response Prioritization

It will be easiest to express our solutions in terms of a single set of semantics: we will
make the assumption that we can model any logic-based solution in terms of a change
in the prioritization of DNS requests, as to maintain correctness we must serve the re-
quest eventually.

Say that we maintain partitions over IPs via some known function

Part : IP→ Π

Where Π is the type of client partitions, chosen so that we expect the empirical
distribution of requests over partitions to be approximately uniform, or

{a← U(IP); Part(a)} ≈ U(Π)

For each partition, we record a priority δ ∈ [0, 1]. We can then serve requests ac-
cording to a min-heap over serving-times:

τr∈Requests = tnow + dmax(1− δr)

Where we at any time only serve requests up to tnow. This maintains the common-
sense properties

– Requests with lower priority will always be served later.

– We will never delay a request by more than dmax

Thereby providing implicit correctness. For an ordinary implementation, we can
rely on the pseudorandomness of some existing hash function H , and set

Part(a) = H(a)1..k

for some k such that 2k integers will not consume much memory; in our simula-
tions, we set k = 16.

5.2 Simple Client-Validation Strategies

Now, we will increase or decrease a client range’s δ whenever we receive, respectively,
a positive or negative indication that its requests are legitimate:

– If we successfully establish a TCP session with a client, we divide δ(π) by α.

– If we are on the same class-B network, we divide δ(π) by α.

4

UDP-Hardening

– We record the number of requests for each π as a proportion of total requests. If
this proportion is higher than 5/|Π|, we multiply δ(π) by α.

– We record the interval between requests for all partitions: for as long as a given
partition is more than two standard deviations above the mean, we multiply δ(π)
by α.

Where, obviously, α ∈ [0, 1]; and we use 3/4 for simulations.

5.3 Weak EDNS Response Validation

Those highly-heuristic strategies will likely work; but can we do better? Can’t we main-
tain some state between the server and client to validate each other?

We suggest using an additional EDNS record (call it type OPT) to do that: on each
server response, it will additionally provide a token, nominally equal to

H(serverIP∥clientIP∥k)
for some hash function H and ephemeral key k. The client has simply to save this

value for any number of requests, to be specified in the query as another OPT record
(much like a CSRF token)! It will be hard to forge because of the assumed pseudoran-
domness of H.

If we multiply δ(π) by α when a client fails to provide a valid OPT token, then in
the steady state, well-behaving clients will have high δ, and a spoofed client will have
δ = 0, as desired.

5.4 Weak Request Proof-of-Work

Alternatively, we can step into the Bitcoin Zeitgeist and require that our client provide
a proof-of-work before being allowed to receive DNS responsesṪhe easiest thing to do
is to directly use the Bitcoin method of producing a number x that satisfies

H(serverIP∥clientIP∥x) = 0k∥...
For some small fixed k, likely on the order of 20. This is strictly weaker than the

response-validation method, and would not strictly-speaking prevent amplification at-
tacks; but it would make them much more difficult and less push-button.

6 Results of Local Simulation

Toward the beginning of this project, we began developing a simulation toolchain to
support the investigation of DNS amplification attacks; however, as our methodology
became clear, the behavior of the system under our controls is actually somewhat obvious,
and not particularly helpful. We have, however, summarized the results here:

– The response prioritization worked in simulation, because we could arbitrarily
trigger additional positive-biasing or negative-biasing events. It’s actually unclear,
though, how often actual servers receive, for example, TCP extension requests. We
would need actual traffic logs to determine the sort of configuration that would
work in practice, but we can indeed make the performance sensitive to these posi-
tive indicators.

– When we condition the time-delay of transmission on the propagation of an un-
predictable token, we necessarily see that spoofed connections never replicate this
behavior, and will always be maximally delayed.

5

Gatewood, Sloan

7 Large-Scale Viability

7.1 General Server Patches

The ideal case for a final deliverable is a patch to core software, such as libbind or libre-
solv; however, this is, as we have discovered, an enormously difficult problem. While
it’s very possible to make simple modifications to the inner request-handling logic of,
for example, glibc, it’s very complicated and likely difficult to maintain. As a result,
it makes much more sense to adopt a more scalable solution.

7.2 A Network-Control Library

The real solution we have decided on (and made very limited progress toward) is a
library to automatically provide the data structures and controls to handle prioritized
request queues, as described above. The mathematics itself is very simple, and our Go
implementation has a large degree of implicit parallelism.

Implementing it in this way has a number of advantages:

– Easy integration into a wide variety of tools

– Generalized testing, i.e. we won’t have to test the method per-implementation

– Much easier to integrate into a network simulation framework

Naturally, patches are much more easily adopted, but we believe that these advan-
tages provide ample justification for a library-based approach.

8 Conclusion

While the conclusion to a paper on an enormously difficult and probably intractable
problem will necessarily be less than totally positive, we believe that these ideas are a
positive contribution, detailing a different way to approach the problem, which should
provide some encouragement to people attacking the big problems of the Internet.

The Weak Response Validation and control techniques are the main contribution
of this paper: they are, so far as we know, a novel approach to lessening the strength
of amplification attacks, and they may actually be feasible with the support of a large
organization like Mozilla. We hope in the future to investigate what, exactly, it would
take to put this into practice.

6

UDP-Hardening

References

[1] Anagnostopoulos et al. (2013). DNS amplification attack revisited. Computers & Secu-
rity, 39, 475-485.

[2] Arends, R. et al. (2005, March). Protocol modifications for the DNS security extensions.
RFC 4035.

[3] Dagon, D., Antonakakis, M., Day, K., Luo, X., Lee, C. P., & Lee, W. (2009, February).
Recursive DNS Architectures and Vulnerability Implications. In NDSS.

[4] Fachkha, C., Bou-Harb, E., & Debbabi, M. (2014, March). Fingerprinting internet DNS
amplification DDoS activities. In New Technologies, Mobility and Security (NTMS),
2014 6th International Conference on (pp. 1-5). IEEE.

[5] Handley, M. (2006, July). Why the Internet only just works. BT Technology Journal Vol
24 No 3.

[6] Kambourakis, G., Moschos, T., Geneiatakis, D., & Gritzalis, S. (2007). Detecting DNS
amplification attacks. In Critical information infrastructures security (pp. 185-196).
Springer Berlin Heidelberg.

[7] Kambourakis et al. (2007). A fair solution to DNS amplification attacks. In Digital
Forensics and Incident Analysis, 2007. WDFIA 2007. Second International Work-
shop on (pp. 38-47). IEEE.

[8] Kravets, David (2011). U.N. report declares Internet access a human right. Wired.

[9] Markoff, John, & Perlroth, Nicole (2013). Firm is accused of sending spam, and fight
jams Internet. The New York Times.

[10] Mockapetris, P. (1987, November). Domain names—implementation and specification.
RFC 1035.

[11] van Rijswijk-Deij, Roland (2014). DNSSEC and its potential for DDoS attacks - a com-
prehensive measurement study. ACM Press.

[12] Vaughn, Randy (2006, March). DNS amplification attacks. ISOTF.

[13] Vixie, P., Graff, M., & Damas, J. (2013, April). Extension mechanisms for DNS. RFC
6891.

[14] Wueest, Candid (2014). The continued rise of DDoS attacks. Symantec Security Re-
sponse.

[15] (2013, March). DNS Amplification Attacks. US-CERT. Alert TA13-088A.

[16] Open Resolver Project. http://openresolverproject.org.

7

http://openresolverproject.org

	Amplification Attacks in-the-large
	The Why of DNS Amplification
	Open Resolvers
	Decentralization

	EDNS and the Possiblity of Extension
	Generally Workable Mitigation Strategies
	Load-balancing and Redundancy
	Server-level Filtering
	Router-level Filtering
	Server-level Logic

	Proposed Hardening Strategies
	Semantics of Response Prioritization
	Simple Client-Validation Strategies
	Weak EDNS Response Validation
	Weak Request Proof-of-Work

	Results of Local Simulation
	Large-Scale Viability
	General Server Patches
	A Network-Control Library

	Conclusion

